

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 2
of 54

Applicable Products and SW version
This document is relating to the following products:

GE863-PRO3

GG863-SR ZigBee
GG863-SR PRO
GG863-SR W-MBUS

and to the following SR Libraries version:

SR Library Version

ZigBee 28.00.01

Mesh Lite 27.00.02

Wireless M-Bus 2F.00.00

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 3
of 54

Contents
1 Introduction.. 6

1.1 Scope...6
1.2 Audience ...6
1.3 Contact Information, Support..6
1.4 Open Source Licenses...6
1.5 Product Overview ...7
1.6 Document Organization ...7

1.6.1 How to Use... 7
1.7 Text Conventions ...8
1.8 Acronyms ..8
1.9 Related Documents ..8

1.9.1 Internal ... 8
1.9.2 External .. 8

1.10 Document Change Log...9
2 System requirements .. 10

2.1 Hardware ...10
2.1.1 GG863-SR.. 10
2.1.2 GE863 PRO3 .. 10

2.2 Software ..10
3 Libraries setup... 12

3.1 How to build a simple application with SR-Libraries ..13
4 Short Range Libraries ... 18

4.1 Introduction...18
4.2 Generic API ...18

4.2.1 Description ... 18
4.2.1.1 Data Types ... 18

4.2.2 Functions Summary ... 25
4.2.3 Functions Description... 26

4.2.3.1 SR_Init.. 26
4.2.3.2 SR_Close ... 30
4.2.3.3 SR_StartNet ...31
4.2.3.4 SR_Reset ... 32

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 4
of 54

4.2.3.5 SR_ScanNet...34
4.2.3.6 SR_SendData .. 37
4.2.3.7 SR_ReceiveData.. 39
4.2.3.8 SR_Ver... 42
4.2.3.9 SR_ScanResFree .. 43

4.3 ZigBee Specific API..44
4.3.1 Description ... 44

4.3.1.1 Data Types ... 44
4.3.1.2 Configuration File ... 45

4.4 MeshLite Specific API ..47
4.4.1 Description ... 47

4.4.1.1 Data Types ... 48
4.4.1.2 Configuration File ... 48
4.4.1.3 How to send and receive raw data using MeshLite technology... 49

4.5 M-Bus Specific API...50
4.5.1 Description ... 50

4.5.1.1 Data Types ... 50
4.5.2 Functions Description... 50

4.5.2.1 SR_SendCommand ... 50
4.5.2.2 SR_SwitchMode... 52

4.5.3 Configuration file .. 52
4.5.4 M-Bus Frame format and serial communication .. 53

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 5
of 54

DISCLAIMER

The information contained in this document is the proprietary information of Telit
Communications S.p.A. and its affiliates (“TELIT”). The contents are confidential and any
disclosure to persons other than the officers, employees, agents or subcontractors of the
owner or licensee of this document, without the prior written consent of Telit, is strictly
prohibited.

Telit makes every effort to ensure the quality of the information it makes available.
Notwithstanding the foregoing, Telit does not make any warranty as to the information
contained herein, and does not accept any liability for any injury, loss or damage of any kind
incurred by use of or reliance upon the information.

Telit disclaims any and all responsibility for the application of the devices characterized in
this document, and notes that the application of the device must comply with the safety
standards of the applicable country, and where applicable, with the relevant wiring rules.

Telit reserves the right to make modifications, additions and deletions to this document due
to typographical errors, inaccurate information, or improvements to programs and/or
equipment at any time and without notice. Such changes will, nevertheless be incorporated
into new editions of this application note.

All rights reserved.

© 2010 Telit Communications S.p.A.

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 6
of 54

1 Introduction

1.1 Scope
This user guide details information about Short Range APIs available for platform based on
Telit GE863 PRO3.

1.2 Audience
This User Guide is intended for software developers who develop applications on the ARM
processor of platform based on Telit GE863 PRO3.

1.3 Contact Information, Support
Our aim is to make this guide as helpful as possible. Keep us informed of your comments
and
suggestions for improvements.

For general contact, technical support, report documentation errors and to order manuals,
contact
Telit’s Technical Support Center at:

TS-EMEA@telit.com
or
http://www.telit.com/en/products/technical-support-center/contact.php

Telit appreciates feedback from the users of our information.

1.4 Open Source Licenses
Linux system is made up of many Open Source device drivers licensed as follows:

mailto:TS-EMEA@telit.com
http://www.telit.com/en/products/technical-support-center/contact.php

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 7
of 54

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Please refer to the following web page for the full text of the license:

http://www.gnu.org/licenses/gpl-2.0.html

1.5 Product Overview
These libraries aim to simplify Telit customer application development that needs to interact
with a short range network.

1.6 Document Organization
This manual contains the following chapters:

• “Chapter 1: Introduction” provides a scope for this manual, target audience, technical
contact information, and text conventions.

• “Chapter 2: System requirements” provides a description of operative context for
Short Range Libraries and its general architecture.

• “Chapter 3: Libraries setup” gives guidelines to setup a project which involves Short
Range Libraries.

• “Chapter 4: Short Range Libraries” describes short range libraries architecture,
provides a list of available API and describes deeply every function and data type
defined into the libraries.

1.6.1 How to Use
If you are new to this product, it is highly recommended to start reading the Telit GE863-
PRO3 Linux Development Environment User Guide, the Telit GE863-PRO3 Linux SW User
Guide manuals and this document in their entirety in order to understand the concepts and
specific features provided by Short Range Libraries.

http://www.gnu.org/licenses/gpl-2.0.html

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 8
of 54

1.7 Text Conventions
This section lists the paragraph and font styles used for the various types of information
presented in this user guide.

Format Content
Courier Linux shell commands, filesystem paths, example C source code, function

interfaces and data type definitions

1.8 Acronyms
Acronym Meaning
ZBIPGW ZigBee IP Gateway product
ZB ZigBee short range communication technology
SR Short Range
LR Long Range
ML Mesh Lite
MB M-Bus

1.9 Related Documents

1.9.1 Internal
The following Telit documents are related to this user guide:

IR[1] TelitGE863PRO3 Linux Development Environment 1VV0300780
IR[2] TelitGE863PRO3 Linux GSM Library User Guide 1vv0300782
IR[3] Telit M-ONE Protocol Stack User Guide 1vv0300819
IR[4] Wireless M-Bus User Guide 1vv0300828

All documentation can be downloaded from Telit’s official web site www.telit.com if not
otherwise indicated.

1.9.2 External
The following external documents are related to this user guide:

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 9
of 54

ER[1] IEEE Std 802.15.4-2003
ER[2] ZigBee Specification 053474r18
ER[3] ZigBee Cluster Library Specification 075123r01
ER[4] Wireless M-Bus standard EN 13757-4

1.10 Document Change Log
RReevviissiioonn DDaattee CChhaannggeess
ISSUE#0 16/07/09 First draft
ISSUE#1 09/07/10 Section 4.2 Changed

Section 4.3 Changed
Section 4.4 Changed
Section 4.5 Added

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
10 of 54

2 System requirements

2.1 Hardware
There are mainly two kinds of operational context for the short range libraries:

1. The GG863-SR terminal
2. The GE863 PRO3 module with additional TelitRF short range hardware

Both situations are described in the following paragraphs.

2.1.1 GG863-SR
The GG863-SR terminal contains a fully featured GSM/GPRS communications module, a
standalone ARM9 CPU and a TelitRF ZigBee or Mesh or M-Bus module.
It makes possible to manage two kinds of communication technologies in the same product:
for long range network (GSM/GPRS) and for short range network (ZigBee, Mesh or M-Bus).
Software developers can use the functions of short range Libraries to configure, manage and
use short range hardware resource.

2.1.2 GE863 PRO3
The GE863 PRO3 contains a fully featured GSM/GPRS communications section and a
standalone ARM9 CPU.
Additional short range hardware (TelitRF ZigBee, Mesh or M-Bus module) could be
connected to the system through the serial interface (refer to IR[1] for more details). Once
added to the system, the short range hardware resource could be configured and managed
using Short Range Libraries.

2.2 Software
The Short Range Libraries should be used with Linux OS for GE863 PRO3, which is
provided by Telit.
In order to create a project which involves the Short Range Libraries also pthread library

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
11 of 54

shall be included. Refer to chapter 3 for more information about project setup.

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
12 of 54

3 Libraries setup
It is possible to add the SR-Library on your development environment simply inserting the
header files and the library, within the /opt/crosstools/telit/include/ and /opt/crosstools/telit/lib
directories respectively:

1. Start the Linux console (Windows Start Menu All programs Telit Development
Platform Console).

2. Copy the library typing: cp /mnt/windows/<PATH>/libSr_Zb_Library.a
/opt/crosstools/telit/lib (FOR ZIGBEE)

3. Copy the library typing: cp /mnt/windows/<PATH>/libSr_Ml_Library.a
/opt/crosstools/telit/lib (FOR MESHLITE)

4. Copy the library typing: cp /mnt/windows/<PATH>/libSr_Mb_Library.a
/opt/crosstools/telit/lib (FOR M-BUS)

5. Copy the header file typing: cp /mnt/windows/<PATH>/SRlibrary.h
/opt/crosstools/telit/include

6. Copy the header file typing: cp /mnt/windows/<PATH>/SRdata.h
/opt/crosstools/telit/include

7. Copy the header file typing: cp /mnt/windows/<PATH>/SRZBlibrary.h
/opt/crosstools/telit/include (ONLY FOR ZIGBEE)

8. Copy the header file typing: cp /mnt/windows/<PATH>/SRZBdata.h
/opt/crosstools/telit/include (ONLY FOR ZIGBEE).

9. Copy the header file typing: cp /mnt/windows/<PATH>/SRMBlibrary.h
/opt/crosstools/telit/include (ONLY FOR M-BUS)

where <PATH> is the folder of Windows where you have stored the new version of the
library files.

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
13 of 54

3.1 How to build a simple application with SR-
Libraries

Open your "Telit Customized Eclipse" starting from "Telit Development Platform" and create
a New Project "ARM uclibc C executable" as shown in Figure 3.1.

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
14 of 54

Figure 3.1

Open new project Properties window end select C/C++ Build -> Setting as shown in Figure
3.2.

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
15 of 54

Figure 3.2

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
16 of 54

Add in the uclib C linker -> Libraries add the folliwing libraries:

- Sr_Zb_Library (FOR ZIGBEE)
- Sr_Ml_Library (FOR MESHLITE)
- Sr_Mb_Library (FOR M-BUS)
- pthread

as shown in Figure 3.3. (it refers to a project based on ZigBee technology).

Figure 3.3

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
17 of 54

Then click on “Apply” to make changes effective and on “OK” to close the “Properties”
window. Now the project is ready for build an application based upon SR-Libraries.

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
18 of 54

4 Short Range Libraries

4.1 Introduction
Short range libraries are a group of libraries that allow managing short range technologies
supported by platform based on Telit GE863 PRO3. Every library is formed by two parts:

• Generic functionalities: this part is common to every short range library and
provides the basic functionalities to configure, start, and scan a network, to reset
the short range module and to send and receive data.

• Specific functionalities: every short range library has a different specific part of
functionalities depending on the specific technology.

Until now the Short Range Library is available for ZigBee (libSr_Zb_Library.a), for MeshLite
(libSr_Ml_Library.a) and for Wireless M-Bus (libSr_Mb_Library.a) technologies.

4.2 Generic API

4.2.1 Description
Generic API provides the basic functionalities that are common to all short range
technologies. These functionalities are:

• Initialize the system to communicate with the short range hardware
• Configure network parameters
• Start the network
• Scan the network
• Reset the short range system
• Send and receive data

4.2.1.1 Data Types
Data types defined for the generic part of every Short Range library are in header file
“SRdata.h”.

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
19 of 54

4.2.1.1.1 Basic Types
The basic types defined in “SRdata.h” are shown and described in Table 4.1.

Variable Type Description
SR_SCAN_TYPE_TAG UINT8 It is the type used to indicate the

scan type to SR_ScanNet,
available values are described in
Table 4.12

SR_STACK_IND_ID_TAG UINT16 It is the type used to indicate the
stack event identifier to the
SR_STACK_CALLBACK_FP,
available values are described in
Table 4.20

SR_VERSION_T char [20] String returned by SR_Ver to
provide library version

Table 4.1

4.2.1.1.1.1 SR_VERSION_T
SR_VERSION_T is used by SR_Ver to pass the library version.
The string returned is composed as follow:
“XX.YY.ZZ.KKJ” e.g.: 27.00.01.RC4
XX: Technology ID, available tech types are listed in Table 4.2
YY: Major number
ZZ: Minor number
KK: Version type (internal use only)
J: Version type number (internal use only)

Description ID
ZigBee Identifier 28
MeshLite Identifier 27
M-Bus identifier 2F

Table 4.2

4.2.1.1.2 Enumerations
The enumerations defined in “SRdata.h” are listed in Table 4.3.

Enum Description
SR_RESET_TYPE_E Provides available reset types

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
20 of 54

SR_MODULE_TYPE_E Provides available module types
SR_STATUS_TYPE_E Provides available values returned by every

library function

Table 4.3

4.2.1.1.2.1 SR_RESET_TYPE_E
SR_RESET_TYPE_E is used by SR_Reset to indicate what type of reset will be done.
The SR_RESET_TYPE_E values are described in Table 4.4.

Name Value Description
SR_RT_HARD 0x00 It is the identifier for a hard reset
SR_RT_SOFT 0x01 It is the identifier for a soft reset

Table 4.4

4.2.1.1.2.2 SR_MODULE_TYPE_E
SR_MODULE_TYPE_E is used by SR_ScanNet to indicate what type of module has been
found.
The values are described in Table 4.5.

Name Value Description
COORDINATOR 0x01 It is the identifier for a Coordinator
ROUTER 0x02 It is the identifier for a Router
ENDDEVICE 0x03 It is the identifier for a Enddevice

Table 4.5

NB: Only for the ZigBee technology: 0x02 identifies a node of the tree and 0x03 a leaf.

4.2.1.1.2.3 SR_STATUS_TYPE_E
SR_STATUS_TYPE_E is the type returned by each API function. The values are described
in Table 4.6.

Name Value Description
SR_STATUS_SUCCESS 0 Generic success value returned by a function
SR_STATUS_ERROR -1 Generic error value returned by a function
SR_STATUS_TIMEOUT -2 Error value returned by a function when a timeout

occurs
SR_STATUS_BAD_PARAM -3 Error value returned by a function when a wrong

parameter is passed by the user

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
21 of 54

SR_STATUS_NWK_ALREADY_RUNNING -4 Error value returned by a function when try a
SR_StartNet without stopping the existing SR
network

SR_STATUS_NWK_ALREADY_STOPPED -5 Error value returned by SR_Reset(),
SR_ScanNet(), SR_SendData() functions when
there is not a SR network running.

SR_STATUS_BAD_CONF_PARAM -6 Error value returned when in the configuration file
a wrong param is read

Table 4.6

4.2.1.1.3 Structures
The structures defined in “SRdata.h” are listed in Table 4.7.

Name Description
SR_DATA_PACKET_T Used to send and receive data packets
SR_SCAN_RES_T Used to return scan result
SR_SCAN_INFO_T Used to hold scan info of a single node

Table 4.7

4.2.1.1.3.1 SR_DATA_PACKET_T
SR_DATA_PACKET_T is used by SR_SendData, SR_ReceiveData and
SR_DATA_CALLBACK_FP to send or receive data packets.
The fields of SR_DATA_PACKET_T structure are described in Table 4.8.

Field Name Field Type Description
SRnwkAddr UINT16 If the SR_SendData API is used it is the network

address of the destination node. If the
SR_ReceiveData API or the
SR_DATA_CALLBACK is used it is the network
address of the source node. For the M-Bus
library, the network address corresponds to the
Manufacturer Id.

SRpar1 UINT16 First and second byte of A-Field (only for M-Bus)
SRpar2 UINT16 Third and fourth byte of A-Field (only for M-Bus)
SRpar3 UINT8 Fifth byte of A-Field (only for M-Bus)
SRpar4 UINT8 Sixth byte of A-Field (only for M-Bus)
SRpar5 UINT8[5] Reserved for future usage

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
22 of 54

SRlength UINT16 Number of data bytes.
Note:
-Range 1-84 for ZigBee (without fragmentation
service)

-Range 1-241 for ZigBee (with fragmentation
service, at the moment, due to a limitation of
the ZigBee firmwares the fragmentation service
is not managed)

-Range 1-660 for MeshLite (when used by
SR_sendData)

-Range 1-250 for MeshLite (when used by
SR_Receive_Data and DATA_CALLBACK)

-Range 2-247 for M-Bus
SRdata UINT8[680] Data buffer

Table 4.8

Important: The maximum value of SRlength depends on the specific short range
technology. Table 4.9 explains limits for different short range technologies.

SR Technology Max SRlength value Notes
ZigBee 84 or 241 Refer to paragraph § 4.3.1.2.1 for futher details.
MeshLite -660

-250
- when used by SR_sendData
- when when used by SR_Receive_Data and
DATA_CALLBACK

M-Bus 247 Refer to paragraph § 4.5.4 for futher details.

Table 4.9

4.2.1.1.3.2 SR_SCAN_RES_T
SR_SCAN_RES_T is used by SR_ScanNet to pass information about every node found in
the network.
It should be allocated by the the application that uses the library.

The fields of SR_SCAN_RES_T structure are described in Table 4.10.

Field Name Field Type Description
SRnodeAwakeCount UINT16 Number of nodes awake
SRnodeSleepCount UINT16 Number of nodes that can sleep
SRnodeAddresses_pp SR_SCAN_INFO_T** Pointer to the list of information about

awake devices. It is allocated by the
library

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
23 of 54

SRnodeSleepAddresses_pp SR_SCAN_INFO_T** Pointer to the list of information about
sleeping devices. It is allocated by the
library

Table 4.10

Note: The memory held by this structure shall be freed using SR_ScanResFree.

4.2.1.1.3.3 SR_SCAN_INFO_T
SR_SCAN_INFO_T holds all the information about a node of the network; it is used by
SR_SCAN_RES_T to pass the information of every node found in the network.
The fields of SR_SCAN_INFO_T structure are described in Table 4.11.

Field Name Field Type Description
SRnwkAddr UINT16 Network address
SRhwAddrLen UINT8 Length of hardware address
SRhwAddr UINT8[12] Hardware address that is technology

dependent (Little Endian)
SRparentNwkAddr UINT16 Parent network address
SRtype SR_MODULE_TYPE_E Module type; available values are listed in

Table 4.5.
SRchildrenNum UINT8 Number of direct children

Table 4.11

4.2.1.1.4 Symbolic Constants
The symbolic constants defined in “SRdata.h” are listed in Table 4.12.

Table 4.12 describes symbolic constants defined for generic scan types available for
SR_ScanNet.

Name Value Description
SR_SCAN_TYPE_DISCOVERY 0x00 It is the identifier to discover every node in the

network.

Table 4.12

Note: General scan type IDs are in the range 0x00-0x0F

4.2.1.1.5 Macros

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
24 of 54

Table 4.13 describes macros to redefine names of basic types provided by sys/types.h in
crosstools for Pro3 platform.

Name Type Description
INT8 char 8 bit integer
INT16 short 16 bit integer
INT32 int 32 bit integer
INT64 quad 64 bit integer
UINT8 u_char Unsigned 8 bit integer
UINT16 u_short Unsigned16 bit integer
UINT32 u_int Unsigned 32 bit integer
UINT64 u_quad Unsigned 64 bit integer

Table 4.13

4.2.1.1.6 Callbacks
Callbacks defined in “SRdata.h“ are listed in Table 4.14.

Function Pointer Type Description
SR_DATA_CALLBACK_FP Function pointer It is the type that defines the data

callback.
SR_STACK_CALLBACK_FP Function pointer It is the type that defines the stack

event callback.

Table 4.14

4.2.1.1.6.1 SR_DATA_CALLBACK_FP
SR_DATA_CALLBACK_FP is used by the SR_Init to register the name of the callback to
manage data.
The definition of SR_DATA_CALLBACK_FP is:

void (*SR_DATA_CALLBACK_FP) (SR_DATA_PACKET_T *SRrecPacket_p)

Important: The callback task must not be blocking, for example infinite cicle,
otherwise the library will not be able to receive other packets.

The input parameters shall be:

< SRrecPacket_p > It is the pointer to the data packet structure

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
25 of 54

Important: the pointer SRrecPacket_p will be unallocated by the library when the
callback returns so it can not be assigned to another pointer. In other words only data
pointed by the pointer can be used.

4.2.1.1.6.2 SR_STACK_CALLBACK_FP
SR_STACK_CALLBACK_FP is used by the SR_Init to register the name of the callback to
manage stack event. This callback has no effect on MeshLite and M-Bus because these
technologies do not generate stack indications.
The definition of SR_STACK_CALLBACK_FP is:

Void(*SR_STACK_CALLBACK_FP) (SR_STACK_IND_ID_TAG SRstackIndId,

 void *SRstackIndPar_p)

Important: The callback task must not be blocking, for example infinite cicle,
otherwise the library will not be able to receive other packets.

The input parameters shall be:

< SRstackIndId > It identifies the stack event received in order to understand the
type of the structure pointed by SRstackIndPar_p.
ZigBee stack event are described in Table 4.20.

< SRstackIndPar_p > It will hold the pointer to the structure that holds the stack
event parameters. The type of the structure pointed is defined
by SRstackIndId

Important: the pointer SRstackIndPar_p will be deallocated by the library when
the callback returns so it can not be assigned to another pointer.

A list of stack events supported until now is shown in Table 4.15.

Stack Event ID Struct Type Passed Technology Reference
SRZB_STACK_IND_DEV_ANN SRZB_DEV_ANNCE_T ZigBee Table 4.20

Table 4.15

4.2.2 Functions Summary

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
26 of 54

Functions provided by Generic API are listed in Table 4.16.

Type Function Name Description
SR_Init Initialize the short range subsystem
SR_Close Release short range resources
SR_StartNet Start the short range network
SR_Reset Reset the short range hardware
SR_ScanNet Scan the short range network
SR_SendData Send data toward a short range node
SR_ReceiveData Receive data from the short range

network
SR_Ver Retrieve Short Range Library version

Generic
API

SR_ScanResFree Free memory holding scan result

Table 4.16

4.2.3 Functions Description

4.2.3.1 SR_Init
This function allocates and initializes all the Short Range Library resources.
SR_Init allows registering two callbacks, one manages stack event packets (valid only for
ZigBee) and the other manages data packets.
The configuration parameters for the network are passed through a configuration file
(SRtech.conf) that is technology dependent.
The description how to write SRtech.conf file is provided in a specific sub paragraph of every
specific technology (ZigBee, MeshLite and M-Bus).

NOTE: If the stack event callback is registered by the user the header file for the
specific technology has to be included because stack events are technology
dependent (E.g. SRZBdata.h for the ZigBee technology).

NOTE: SR_Init has to be called before every other function of the library otherwise
any other call to another function of the library (excluded SR_Ver and
SR_ScanResFree APIs) will return SR_STATUS_ERROR.

NB: SR_Init will return an error if the “Sr_XX_Library” has been already initialized.

4.2.3.1.1 Prototype
The prototype of SR_Init is:

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
27 of 54

SR_STATUS_TYPE_E SR_Init(SR_DATA_CALLBACK_FP
SrdataCallback,

 SR_STACK_CALLBACK_FP
SRstackCallback,

 UINT8 *SRpathConfDir_p)

4.2.3.1.2 Parameters
The input parameters are three:

< SrdataCallback > Is the callback to manage data packet received from the
short range network. If it is NULL the data shall be read using
the function SR_ReceiveData. If it is a function pointer
every call to SR_ReceiveData will return
SR_STATUS_ERROR

< SRstackCallback > Is the callback to manage stack events received from short
range stack of the module managed through the library. If it is
NULL stack events will not be managed (valid only for ZigBee
technology)

< SRpathConfDir_p > Is a string (it shall be terminated with the “\0“ character) that
provide the absolute path of the directory that holds the
configuration file SRtech.conf. If it is NULL the function will
search in the directory that holds the application which is
using the library for a file named SRtech.conf

The interfaces of SRdataCallback and SRstackCallback are described in § 4.2.1.1.6.1
and § 4.2.1.1.6.2, respectively.

4.2.3.1.3 Return Values
The function returns SR_STATUS_SUCCESS if the initialization succeeds. Otherwise it returns
SR_STATUS_BAD_PARAM if there are some errors in the parameters passed to the function,
or SR_STATUS_BAD_CONF_PARAM if parameters specified in file SRtech.conf are invalid.
More details about configuration files are in § 4.3.1.2 for ZigBee, in § 4.4.1.2 for MeshLite
and in § 4.5.3 for M-Bus.
If the file SRtech.conf doesn’t exist or it can’t be opened, a SR_STATUS_BAD_PARAM error
will be returned.
For other types of error SR_STATUS_ERROR will be returned.

4.2.3.1.4 Example

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
28 of 54

/********** Defines the callback function for data events
***********/
void DataCallBack(SR_DATA_PACKET_T *SRrecPacket_p)
{

UINT8 i = 0;

printf("\n\r DATA CALL BACK \n\r");

printf("\n\rNwk addr of source node is
%x\n\r",((SR_DATA_PACKET_T*)(SRrecPacket_p))->SRnwkAddr);

printf("\n\rData lenght is %d\n\r",
((SR_DATA_PACKET_T*)(SRrecPacket_p))->SRlength);

printf("\n\rData received :\n\r");
for(i=0;i<(((SR_DATA_PACKET_T*)(SRrecPacket_p))-
>SRlength);i++)
{

printf("\n\r%x\n\r",
((SR_DATA_PACKET_T*)(SRrecPacket_p))->SRdata[i]);

}

return;

}
/********** Define the callback function for stack events
***********/
void StackCallBack(SR_STACK_IND_ID_TAG SRstackIndId, void
*SRstackIndPar_p)
{

printf("\n\r STACK CALL BACK RUNNING \n\r");

printf("\n\rSR_STACK_IND_ID is %x\n\r", SRstackIndId);

if(SRstackIndId == SRZB_STACK_IND_DEV_ANN)
{

printf("\n\rA new device has joined the network\n\r");

printf("\n\rNwk addr is
%x\n\r",((SRZB_DEV_ANNCE_T*)(SRstackIndPar_p))-
>SRZBnwkAddr);

printf("\n\rHw address is %llx\n\r",
((SRZB_DEV_ANNCE_T*)(SRstackIndPar_p))->SRZBieeeAddr);

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
29 of 54

printf("\n\rCapability is %x\n\r",
((SRZB_DEV_ANNCE_T*)(SRstackIndPar_p))-
>SRZBcapability);

}

return;

}

/************ Call the SR_Init() inside the main() function
*********/
void SR_Init_Example(void)
{

SR_STATUS_TYPE_E eReturnCode = SR_STATUS_ERROR;
UINT8 path[200];

/* Declare function pointers */
SR_STACK_CALLBACK_FP stackCallback;
SR_DATA_CALLBACK_FP dataCallback;

/* Assign the value to function pointers */
stackCallback = StackCallBack;
dataCallback = DataCallBack;

/* Clear the path variable */
memset(path,0,sizeof(path));
/* Assign the value to path variable */
strcpy((char *)path,"/");

/* Call the SR_Init() */
if ((eReturnCode = SR_Init(dataCallback, stackCallback,
path)) == SR_STATUS_SUCCESS)
{

/* System has been initialized */
;

}
else
{

/* System has not been initialized */
;

}

return;

}

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
30 of 54

4.2.3.2 SR_Close
This function allows closing the communication with the short range technology and
releasing every resource allocated with a previous call to SR_Init. If there is a short range
network running, it will not be stopped with SR_Close , in order to stop the SR netwok the
SR_Reset API shall be used.
However, due to closing of the communication, all messages coming from the SR network
will be lost.
After a SR_Close it is possible to reconnect to a SR Network already running using the
SR_Init function.

NB: SR_Close will return an error if there is no resource to release.

4.2.3.2.1 Prototype
The prototype of SR_Close is:

SR_STATUS_TYPE_E SR_Close()

4.2.3.2.2 Parameters
SR_Close does not have parameters.

4.2.3.2.3 Return Values
The function returns SR_STATUS_SUCCESS if the closure succeeds otherwise it returns
SR_STATUS_ERROR.

4.2.3.2.4 Example
void SR_Close_Example(void)
{
SR_STATUS_TYPE_E eReturnCode = SR_STATUS_ERROR;

if((eReturnCode = SR_Close()) == SR_STATUS_SUCCESS)
{
 /* System resources have been released */
}
else
{
 /* System resources have not been released */
}

return;
}

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
31 of 54

4.2.3.3 SR_StartNet
This function allows starting the short range network.

4.2.3.3.1 MeshLite behaviour
When the network used is based on MeshLite technology, the SR_StartNet can be called
in each moment after a SR_Init. There is no limitation related to the use of this function.
The only reasons of failure of the SR_StartNet function are due to possible
communication error with the coordinator or to configuration error.

4.2.3.3.2 ZigBee behaviour
If the ZigBee technology is used, the SR_StartNet will be effective only when there isn’t
SR Network already running; otherwhise SR_STATUS_NWK_ALREADY_RUNNING will be
returned and SR_StartNet will have no effect.

4.2.3.3.3 M-Bus behaviour
Since in Wireless M-Bus technology a network can not be started or stopped, SR_StartNet
returns always SR_STATUS_ERROR.

4.2.3.3.4 Prototype
The prototype of SR_StartNet is:

SR_STATUS_TYPE_E SR_StartNet()

4.2.3.3.5 Parameters
SR_StartNet does not have parameters.

4.2.3.3.6 Return Values
The function returns SR_STATUS_SUCCESS if the network start succeed otherwise it returns
SR_STATUS_ERROR.

4.2.3.3.7 Example
int SR_StartNet_Example(void)
{
SR_STATUS_TYPE_E eReturnCode = SR_STATUS_ERROR;

if((eReturnCode = SR_StartNet()) == SR_STATUS_SUCCESS)
{
 /* Short range network has been started */
}

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
32 of 54

else
{
 /* Short range network has not been started */
}

return 0;
}

4.2.3.4 SR_Reset
This function allows resetting the short range hardware. The reset could be hard
(SR_RT_HARD) or soft (SR_RT_SOFT).
A hard reset stops the network, resets every configuration parameters on the short range
module to the default factory values and reloads the values from configuration file
(SRtech.conf) in the Library. In this way, if the user changes the parameters in the
SRtech.conf file, at the next SR_StartNet new parameters will be set on the coordinator.
The soft reset stops only the network and resets every configuration parameters on the short
range module to the default factory values.

4.2.3.4.1 MeshLite behaviour
When the network used is based on MeshLite technology, the SR_Reset can be called in
each moment after a SR_Init. There is no limitation related to the use of this function.
Hard reset means that the routing table will be cleared, all the registers will be restored to
the factory default and that the values from config file will be reloaded in the ML_Library. Soft
reset performs the same operations as hard reset except the reloading of values from config
file.
Please also note that, using MeshLite technology, the SR_Reset will not result in a network
stop: the coordinator will not see the network until it receives new association frames from
end devices. At the end of this new association process, which may last from 0 to 40
minutes, the network will be restored.

4.2.3.4.2 ZigBee behaviour
If the ZigBee technology is used, the SR_Reset will be effective only when there is a SR
Network running; otherwhise SR_STATUS_NWK_ALREADY_STOPPED will be returned and
SR_Reset will have no effect.
If at least a Router is associated to the ZigBee network, this function will not stop the
network.
In this case SR_Reset removes association between Coordinator and ZigBee network,
resets every configuration parameters and, if hard reset is used, reloads values from
configuration file in the SR library.
In order to stop the network each router shall be switched off or reset one by one, acting

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
33 of 54

directly through its serial interface.

4.2.3.4.3 M-Bus behaviour
Since in Wireless M-Bus technology a network can not be started or stopped, SR_Reset
does not change the network status; moreover, configuration parameters of the short range
module are not reset to their default value. If the data callback is not used, every data packet
received from the short range module but not handled by a call to SR_ReceiveData will be
lost.

4.2.3.4.4 Prototype
The prototype of SR_Reset is:

SR_STATUS_TYPE_E SR_Reset(SR_RESET_TYPE_E SRresetType)

4.2.3.4.5 Parameters
The input parameter is:

< SRresetType > If it is set to SR_RT_SOFT a soft reset is made else if it is set to
SR_RT_HARD a hard reset is made

4.2.3.4.6 Return Values
The function returns SR_STATUS_BAD_PARAM if a parameter passed by the user is wrong,
SR_STATUS_SUCCESS if the network reset succeed otherwise it returns
SR_STATUS_ERROR.

4.2.3.4.7 Example
void SR_Reset_Example(void)
{
 SR_STATUS_TYPE_E eReturnCode = SR_STATUS_ERROR;

 SR_RESET_TYPE_E SRresetType = SR_RT_HARD;

 eReturnCode = SR_Reset(SRresetType);

 /* Check result */
 if (eReturnCode == SR_STATUS_SUCCESS)
 {
 printf("\n\r Reset OK \n\r");
 }

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
34 of 54

 else
 {
 printf("\n\r Reset NOT OK \n\r");
 }

 return;
}

4.2.3.5 SR_ScanNet
This function allows scanning the short range network. The scan means discover devices in
the short range network, also the coordinator will be returned in the modules list. The
coordinator module has not parent, then the field SRparentNwkAddr does not matter (it is
possible to find the same id of the coordinator into its field SRparentNwkAddr). Depending
on the specific technology different types of scan are available. This function returns error
when using M-Bus, because scanning is not possible with this technology.

4.2.3.5.1 Prototype
The prototype of SR_ScanNet is:

SR_STATUS_TYPE_E SR_ScanNet(SR_SCAN_TYPE_TAG SRscanType,

 SR_SCAN_RES_T *SRscanRes_p,

 UINT32 SRtimeOut)

4.2.3.5.2 Parameters
The input parameters are:

< SRscanType > It can depend on the short range technology; all the allowed
values are shown in Table 4.12

< SRscanRes_p > It is a pointer to a structure that holds the scan result. It should
be allocated by the application that uses the library.

< SRtimeOut > Timeout in seconds. Its meaning depends on the SRscanType
and it is described in Table 4.17. The value of this timeout shall
not be 0 and it shall be smaller than 36000 (seconds).
In the MeshLite version is used as timeout for each command
sent to each module.

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
35 of 54

SRscanType Technology SRtimeOut meaning
SR_SCAN_TYPE_DISCOVERY All It is the maximum wait time for a

response from a device during a scan

Table 4.17

Important: Before calling the SR_ScanNet the user shall call the macro
SR_New_SR_SCAN_RES_T(MyVar): it declares and initializes the variable MyVar in
the correct way. After a successful call to the function, if some remote device has
been discovered, memory pointed by SRscanRes_p shall be freed by the user using
SR_ScanResFree before a new call to the function, otherwise
SR_STATUS_BAD_PARAM will be returned.

4.2.3.5.3 Return Values
The function returns SR_STATUS_SUCCESS if the network scan succeed, it returns
SR_STATUS_ERROR if an error occurs or SR_STATUS_BAD_PARAM if some parameter is
wrong. Also if there aren’t remote devices to discover the function returns
SR_STATUS_SUCCESS but the lists of discovered devices will be empty except for the
awake modules list, it will contain the coordinator.
If the ZigBee technology is used and there isn’t short range network running the function
returns SR_STATUS_NWK_ALREADY_STOPPED.
If M-Bus is used, the function returns SR_STATUS_ERROR.

4.2.3.5.4 Example
void SR_ScanNet_Example(void)
{
 SR_STATUS_TYPE_E eReturnCode = SR_STATUS_ERROR;

 /* Declare and initialize a variable that will contain the
result of the SR_ScanNet() */
 SR_New_SR_SCAN_RES_T(SRscanRes);
 /* It means:
SR_SCAN_RES_T SRscanRes =
{
 .SRnodeAwakeCount = 0,
 .SRnodeSleepCount = 0,
 .SRnodeAddresses_pp = NULL,
 .SRnodeSleepAddresses_pp = NULL,
}
 */

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
36 of 54

 SR_SCAN_TYPE_TAG SRscanType= SR_SCAN_TYPE_DISCOVERY;
 UINT32 SRtimeout = 10;
 UINT8 i = 0;
 UINT8 j = 0;

 eReturnCode = SR_ScanNet(SRscanType, &SRscanRes, SRtimeout);

 if (eReturnCode == SR_STATUS_SUCCESS)
 {
 printf("\n\rThere are %d awake devices\n\r",
SRscanRes.SRnodeAwakeCount);

 for (i=0; i<(SRscanRes.SRnodeAwakeCount); i++)
 {
 printf("\n\r Awake device %d has nwk address %x \n\r and
hw address :\n\r",(i+1), (SRscanRes.SRnodeAddresses_pp[i])-
>SRnwkAddr);
 for (j=0; (j<(SRscanRes.SRnodeAddresses_pp[i])-
>SRhwAddrLen); j++)
 {
 printf(" - %x\n\r",
(SRscanRes.SRnodeAddresses_pp[i])->SRhwAddr[j]);
 }
 printf("\n\r Its parent has network address %x\n\r",
(SRscanRes.SRnodeAddresses_pp[i])->SRparentNwkAddr);

 printf("\n\r Its node type is %d\n\r",
(SRscanRes.SRnodeAddresses_pp[i])->SRtype);

 printf("\n\r It have %d children\n\r", (SRscanRes.
SRnodeAddresses_pp[i])->SRchildrenNum);
 }

 printf("\n\rThere are %d sleeping devices\n\r",
SRscanRes.SRnodeSleepCount);

 for (i=0; i<(SRscanRes.SRnodeSleepCount); i++)
 {

 for (j=0; (j<(SRscanRes.SRnodeSleepAddresses_pp[i])-
>SRhwAddrLen); j++)
 {
 printf("\n\r Sleeping device %d has nwk address %x
\n\r", (i+1), (SRscanRes.SRnodeSleepAddresses_pp[i])->SRnwkAddr);
 }

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
37 of 54

 printf("\n\r Its parent has network address
%x\n\r",(SRscanRes. SRnodeSleepAddresses_pp[i])->SRparentNwkAddr);
 }
 }
 else
 {
 /* An error occured during the network scan */
 ;
 }

 /********* Free system resources **********/

 /* Free the array of devices discovered by the SR_ScanNet() */
 eReturnCode = SR_ScanResFree(&SRscanRes);
 if (eReturnCode == SR_STATUS_SUCCESS)
 {
 /* Array of devices returned by the SR_ScanNet() has been
freed */
 ;
 }
 else
 {
 /* An error occured. Array of devices has not been freed */
 ;
 }

 return;
}

4.2.3.6 SR_SendData
This function allows sending data to another node or to itself.

Only for ZigBee technology:
If the fragmentation service has been activated, SR_SendData accepts a
SR_DATA_PACKET_T parameter with Srlength field up to 241 (at the moment, due to a
limitation of the ZigBee firmwares the fragmentation service is not not managed). Otherwise
the max value of Srlength field will be 84.
In order to activate the fragmentation service refer to paragraph § 4.3.1.2.1

Only for MeshLite technology:
Using the SR_SendData in order to send data, the user shall send data with a maximum
length of MaxPacketDataLength bytes (refer to paragraph 4.4.1.2) and he shall wait for at
least a delay of 100ms before sending next packet data. Otherwise unexpected behavior

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
38 of 54

can happen

4.2.3.6.1 Prototype
The prototype of SR_SendData is:

SR_STATUS_TYPE_E SR_SendData(SR_DATA_PACKET_T
*SRdataPacket_p,

 UINT32 SRtimeOut)

4.2.3.6.2 Parameters
The input parameters are:

< SRdataPacket_p > It is a pointer to a structure that holds the destination network
address and the data to send, this structure is described in
Table 4.8 It should be allocated by the application that uses
the library.

< SRtimeOut > Timeout in seconds. If it is 0 the function checks for the
confirm from lower layers only once without retry (in this case
a timeout error may be returned). If it is bigger than 0 the
function waits for confirm up to the timeout or up to an error
message from lower layers. This behaviour is valid only for
ZigBee, in the MeshLite and M-Bus versions this parameter is
not used.

4.2.3.6.3 Return Values
The function returns SR_STATUS_SUCCESS if the data sending succeeds otherwise it
returns SR_STATUS_ERROR if an error occurs or SR_STATUS_TIMEOUT if the time out
expired or SR_STATUS_BAD_PARAM if some parameter is wrong.
If ZigBee technology is used and there isn’t short range network running the function returns
SR_STATUS_NWK_ALREADY_STOPPED.
If MeshLite or M-Bus technologies are used there is no way to know if the packet has been
sent to an existing module. In MeshLite the Coordinator sends the packet broadcast but it
can’t know if the recipient module exists in the network. It is a limit of these types of
technology; hence, once the data has been sent in the air, MeshLite and M-Bus SR libraries
will return always SR_STATUS_SUCCESS.

4.2.3.6.4 Example
void SR_SendData_Example(void)

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
39 of 54

{
 SR_STATUS_TYPE_E eReturnCode = SR_STATUS_ERROR;
 UINT32 SRtimeout = 10;
 SR_DATA_PACKET_T *SRdataPacket_Send;

 /* Allocate space for the struct that will contains data to send
*/
 SRdataPacket_Send = malloc(sizeof(SR_DATA_PACKET_T));

 /* Set the network address of the recipient */
 SRdataPacket_Send->SRnwkAddr = 0x796F;

 /* Set the length of data to send. NB: the max value allowed is
256 */
 SRdataPacket_Send->SRlength = 0x05;

 /* Set a generic data message */
 SRdataPacket_Send->SRdata[0] = 0x31;
 SRdataPacket_Send->SRdata[1] = 0x32;
 SRdataPacket_Send->SRdata[2] = 0x33;
 SRdataPacket_Send->SRdata[3] = 0x34;
 SRdataPacket_Send->SRdata[4] = 0x35;

 if((eReturnCode = SR_SendData(SRdataPacket_Send, SRtimeout)) ==
SR_STATUS_SUCCESS)
 {
 /* Data packet has been sent correctly */
 ;
 }
 else
 {
 /* An error occured during send data */
 ;
 }

 /********* Free system resources **********/

 free(SRdataPacket_Send);

 return;
}

4.2.3.7 SR_ReceiveData

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
40 of 54

This function allows receiving data from any node of the SR network. If the
SR_DATA_CALLBACK_FP is passed to SR_Init this function cannot be used and will return
every time SR_STATUS_ERROR.

Important: The function retrieves the first data message received (one by one), and sets the
field SRnwkAddr to the network address of the sender.

Only for ZigBee technology:
At the moment, due to a limitation of the ZigBee firmwares the length of the data packet shall
not be bigger than 84 bytes.

Only for MeshLite technology:
if a node sends a packet data of length bigger than 250 bytes, the user will receive maximun
250 bytes at avery SR_ReceiveData (to receive all data, call SR_ReceiveData more times)

4.2.3.7.1 Prototype
The prototype of SR_ReceiveData is:

SR_STATUS_TYPE_E SR_ReceiveData
(SR_DATA_PACKET_T *SRdataPacket_p,

 UINT32 SRtimeOut)

4.2.3.7.2 Parameters
The input parameters are:

< SRdataPacket_p > It is a pointer to a structure that will hold the network address
of the sender and the data received from the network, this
structure is described in Table 4.8. It should be allocated by
the application that uses the library.

< SRtimeOut > Time out in seconds. If it is 0 the function checks for incoming
data only once without retry (in this case a timeout error may
be returned). If it is bigger than 0 the function waits for
incoming data up to the timeout or up to an error message
from lower layers.

4.2.3.7.3 Return Values
The function returns SR_STATUS_SUCCESS if the receiving succeeds otherwise it returns

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
41 of 54

SR_STATUS_ERROR if an error occurs or SR_STATUS_TIMEOUT if the time out expired or
SR_STATUS_BAD_PARAM if some parameter is wrong.
If the ZigBee technology is used and there isn’t short range network running the function
returns SR_STATUS_NWK_ALREADY_STOPPED.

4.2.3.7.4 Example
void SR_ReceiveData_Example()
{
SR_STATUS_TYPE_E eReturnCode = SR_STATUS_ERROR;
UINT32 SRtimeout = 10;
SR_DATA_PACKET_T * SRdataPacket_Receive;
UINT8 i = 0;

/* Allocate space for the struct that will contains received data */
SRdataPacket_Receive = malloc(sizeof(SR_DATA_PACKET_T));

if((eReturnCode = SR_ReceiveData(SRdataPacket_Receive, SRtimeout))
== SR_STATUS_SUCCESS)
{

 printf("\n\rNwk addr of source node is
%x\n\r",((SR_DATA_PACKET_T*)(SRdataPacket_Receive))->SRnwkAddr);

 printf("\n\rData lenght is %d\n\r",
((SR_DATA_PACKET_T*)(SRdataPacket_Receive))->SRlength);

 printf("\n\rData received :\n\r");
 for(i=0;i<(((SR_DATA_PACKET_T*)(SRdataPacket_Receive))-
>SRlength);i++)
 {
 printf("\n\r%x\n\r",
((SR_DATA_PACKET_T*)(SRdataPacket_Receive))->SRdata[i]);
 }
}
else
{
 /* An error occured while receiving data */

 printf("\n\r SR_ReceiveData() returns %d \n\r", eReturnCode);
}

/********* Free system resources **********/

free(SRdataPacket_Receive);

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
42 of 54

return;
}

4.2.3.8 SR_Ver
This function allows to retrieve the version of the library.

4.2.3.8.1 Prototype
The prototype of SR_Ver is:

SR_STATUS_TYPE_E SR_Ver(SR_VERSION_T SRversion)

4.2.3.8.2 Parameters
The input parameters are:

< SRversion_p > It is an array of chars (string) that will hold information about
version of short range library. The description of the structure is
in 4.2.1.1.1.1

4.2.3.8.3 Return Values
The function returns SR_STATUS_SUCCESS if succeeds otherwise it returns
SR_STATUS_ERROR.

4.2.3.8.4 Example
void SR_Ver_Example(void)
{
 SR_STATUS_TYPE_E eReturnCode = SR_STATUS_ERROR;
 SR_VERSION_T SRversion;

 if((eReturnCode = SR_Ver(SRversion)) == SR_STATUS_SUCCESS)
 {
 /* Information about library version has been retrieved */
 printf("\n\rMain version is %s\n\r", SRversion);
 }
 else
 {
 /* An error occured. Information about library version has
not been retrieved */
 ;

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
43 of 54

 }
}

4.2.3.9 SR_ScanResFree
This function doesn’t interact with the SR network, it only allows to free the lists of devices
contained in the struct that holds scan result (SR_SCAN_RES_T).
It is necessary to call SR_ScanResFree after a successful call to the function
SR_ScanNet, if some remote device has been discovered and before a new call to the
function SR_ScanNet, otherwise SR_STATUS_BAD_PARAM will be returned by the scan
function.

4.2.3.9.1 Prototype
The prototype of SR_ScanResFree is:

SR_STATUS_TYPE_E SR_ScanResFree(SR_SCAN_RES_T *SRscanRes_p)

4.2.3.9.2 Parameters
The input parameter is:

< SRscanRes_p > It is the pointer previously passed to SR_ScanNet

4.2.3.9.3 Return Values
The function returns SR_STATUS_SUCCESS if succeeds otherwise it returns
SR_STATUS_ERROR. If M-Bus is used, the function always returns SR_STATUS_ERROR.

4.2.3.9.4 Example
Refer to 0 for an example of usage with the SR_ScanNet() function.

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
44 of 54

4.3 ZigBee Specific API

4.3.1 Description
ZigBee Specific API provides the specific functionalities of the ZigBee technology.

4.3.1.1 Data Types
Data types defined for the ZigBee part of Short Range library are in header file
“SRZBdata.h”.

4.3.1.1.1 Structures
The structures defined in “SRZBdata.h” are listed in Table 4.18.

Name Description
SRZB_DEV_ANNCE_T This structure holds data related to a new ZigBee device

that has just joined the network.

Table 4.18

4.3.1.1.1.1 SRZB_DEV_ANNCE_T
SRZB_DEV_ANNCE_T is used by SR_STACK_CALLBACK_FP to pass data related to the
received Device_Annce stack event (see §2.4.3.1.11 of ER[2]).
The fields of SRZB_DEV_ANNCE_T structure are described in Table 4.19.

Field Name Field Type Description
SRZBnwkAddr UINT16 Network address of the device that has

joined the network
SRZBieeeAddr UINT64 The IEEE802.15.4 address of the device

that has joined the network (Big Endian)
SRZBcapability UINT8 The capability of the device that has joined

the network (see §2.4.3.1.11 of ER[2]) for
more details.

Table 4.19

4.3.1.1.2 Symbolic Constants
The symbolic constants defined in “SRZBdata.h” are listed in Table 4.20. describes symbolic

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
45 of 54

constants defined for stack event identifier available for SR_STACK_CALLBACK_FP.

Name Value Description
SRZB_STACK_IND_DEV_ANN 0x1000 It is the identifier of a Device_Annce

stack event, see §2.4.3.1.11 ER[2]

Table 4.20

Note: ZigBee stack indication IDs are in the range 0x1000-0x1FFF

4.3.1.2 Configuration File
The SRtech.conf contains the parameters needed by the SR-Library to create a ZigBee
network and to interact with ZigBee nodes. It is formatted as follows:
…
It is a comment
[GROUP_TAG_1]
It is a comment
KEY_TAG_1 = VALUE_1
It is a comment
KEY_TAG_2 = VALUE_2
…
…
It is a comment
[GROUP_TAG_2]
It is a comment
KEY_TAG_1 = VALUE_1
It is a comment
KEY_TAG_2 = VALUE_2
…
…

Where:

- [GROUP_TAG_1]is the identifier of a group of parameters that follow this tag.
- KEY_TAG_1 is the identifier of a parameter
- VALUE_1 is the value of the parameter

Comments are indicated with the # character.

The following table shows the parameters required by the ZigBee technology and their valid
ranges.

GROUP_TAG KEY_TAG M/O/U Valid Range Description

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
46 of 54

PanID M 0 - 65535 It is the identifier of the
ZigBee network.

[Network]
ChannelID M 11 - 26

It identifies the physical
channel used by the
ZigBee network

[UART] SerialPort Unused

DstEndPoint M 0 - 255 It is the End Point of the
remote ZigBee node

ProfileId M 0 - 65535
It is the identifier of the
profile implemented in
the coordinator

ClusterId M 0 - 65535

It identifies the commad
sent to the remote
ZigBee node. Refer to
the ZigBee Cluster
Library document for
more details.

SrcEndPoint M 0 - 255 It is the End Point of the
ZigBee Coordinator

TxOption M 0 - 255 Refer to paragraph §
4.3.1.2.1for details

[DataRequestParam]

Radius M 0 - 255 Refer to TelitRF
document for ZigBee

Table 4.21

Legenda:
M – Mandatory
O – Optional
U – Unused

NB: The order of KEY_TAGs inside a GROUP_TAG is not important. It is not possible to use
the same name for two or more KEY_TAGs inside a single GROUP_TAG.

Important: If one of mandatory values are not set or set with a wrong value the SR_Init
function returns an error.
Pay attention: Do not insert space or other characters after the value; it can cause error in
the SR_Init function.

4.3.1.2.1 Transmission options
The TxOption field of the configuration file sets the transmission options for the data
message to send toward a remote ZigBee node. It will be read using the operator “bitwise
AND” with the value 0x0D in order to enable one or more of the following features:

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
47 of 54

- Bit 0 : Security enabled transmission
- Bit 2: Acknowledged transmission
- Bit 3: Fragmentation service enabled

The Table 4.22 summarizes the usage of TxOption field:

TxOption
value Operator Result Feature enabled

0byyyyyyy1 & 0x0D 0b0000yy01 Security transmission

0byyyyy1yy & 0x0D 0b0000y10y Acknowledged
transmission

0byyyy1yyy & 0x0D 0b00001y0y Fragmentation service

Table 4.22

Where y can be 0 or 1.

Fragmentation service splits a large data packet in smaller ones, in order to allow
transmission over the air.

When sending SR_DATA_PACKET_T with Srlength field bigger than 84, the Fragmentation
service shall be enabled. Otherwise the SR_SendData function will return an error.
This limitation doesn’t concern the SR_ReceiveData function and
SR_DATA_CALLBACK_FP callback. For these function, the Srlength field of
SR_DATA_PACKET_T parameter, will be up to 241.

For details about Security transmission and Acknowledged transmission refer to ER[2].

At the moment, due to a limitation of the ZigBee firmwares the Fragmentation service is not
managed. The length of the data packet shall not be bigger than 84 bytes for
SR_SendData, SR_ReceiveData and SR_DATA_CALLBACK_FP callback, otherwise
unexpected behaviour can happen.

4.4 MeshLite Specific API

4.4.1 Description

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
48 of 54

4.4.1.1 Data Types
Specific data types are not defined.

4.4.1.2 Configuration File
The SRtech.conf contains the parameters needed by the SR-Library to create a MeshLite
network and to interact with MeshLite nodes. It is formatted as follows:
…
It is a comment
[GROUP_TAG_1]
It is a comment
KEY_TAG_1 = VALUE_1
It is a comment
KEY_TAG_2 = VALUE_2
…
…
It is a comment
[GROUP_TAG_2]
It is a comment
KEY_TAG_1 = VALUE_1
It is a comment
KEY_TAG_2 = VALUE_2
…
…

Where:

- [GROUP_TAG_1]is the identifier of a group of parameters that follow this tag.
- KEY_TAG_1 is the identifier of a parameter
- VALUE_1 is the value of the parameter

Comments are indicated with the # character.

The following table shows the parameters required by the MeshLite technology and their
valid ranges.

GROUP_TAG KEY_TAG M/O/U Valid
Range

Description

NetPeriod M 0 - 65000 Refer to ML
documentation

BaseTime M 3 - 7 Refer to ML
documentation

[Network]

FrameSize M 0 - 2 Refer to ML
documentation

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
49 of 54

NetId M 0 - 255 Refer to ML
documentation

[UART] SerialPort Unused

[DATA] MaxPacketDataLength M 1 - 660

Maximun packet
data length for
SR_SendData
(for SR_ReceiveData
and
DATA_CALLBACK
the Maximun packet
data length is 250)

Table 4.23

Important: If one of these values are not set or set with a wrong value the SR_Init function
returns an error.
Pay attention: Do not insert space or other characters after the value; it can cause error in
the SR_Init function.

4.4.1.3 How to send and receive raw data using MeshLite
technology

As reported in IR[3], it is not possible to add any customized software on the Mesh Lite
module. The only way to use these modules is to connect another “external CPU” to the
serial port and then implement a custom protocol using Mesh Lite serial protocol features.
The Mesh Lite serial protocol has the following format:

Byte Header LSB Address MSB address PAYLOAD CR

In this format there is not any information about packet length or CRC, than the only way to
recognize the end of packet is to wait for a carriage return character. For this reason the
user shall not insert the '0x0D' as data into the data packet; if it will be necessary he shall
implement and use a bit stuffing/destuffing algorithm to hide the '0x0D' character into the
data stream packet, both when he sends data from GG863 to end device and when he
sends data from end device to GG863. When the user sends data using the API
SR_SendData he shall insert 0x0D as last byte of SRdata field of SR_DATA_PACKET_T
structure. When the user receives data using the function SR_ReceiveData, he does not
receive ‘0x0D’ as last byte of SRdata field. The SR library provides to remove this special
character.

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
50 of 54

4.5 M-Bus Specific API

4.5.1 Description
M-Bus specific API provides the specific functionalities of the M-Bus technology.

4.5.1.1 Data Types
Data types defined for the M-Bus part of Short Range library are in header file
“SRMBlibrary.h”.

4.5.1.1.1 Enumerations
The enumerations defined in “SRMBlibrary.h” are listed in Table 4.24.

Enum Description
SR_MODE_E Provides available operating modes for the M-

Bus module
Table 4.24

4.5.1.1.1.1 SR_MODE_E
SR_MODE_E is used by SR_SwitchMode to indicate which operating mode will be
activated.
The SR_MODE_E values are described in Table 4.25.

Name Value Description
COMMAND_MODE 1 It is the identifier for command mode
DATA_MODE 2 It is the identifier for data mode

Table 4.25

4.5.2 Functions Description

4.5.2.1 SR_SendCommand
This function sends an AT command to a module in command mode and waits for a
received response. If this function is called to send the “ATO\r” command to enter data
mode, no command is sent and SR_STATUS_ERROR is returned; to enter data mode,
SR_SwitchMode must be used.

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
51 of 54

4.5.2.1.1 Prototype
The prototype of SR_SendCommand is:

SR_STATUS_TYPE_E SR_SendCommand(UINT8 SRbuffer[256],

 UINT32 SRtimeout)

4.5.2.1.2 Parameters
The input parameters are:

< SRbuffer > Is the buffer which contains the AT command to send and
where the received response is stored

< SRtimeout > Is the timeout for the response in seconds. If it is 0 the
function waits until a response is received. If it is bigger than 0
the function waits for a response up to SRtimeOut seconds

4.5.2.1.3 Return Values
The function returns SR_STATUS_SUCCESS if the command is sent and a response is
received, otherwise it returns SR_STATUS_ERROR if an error occurred or
SR_STATUS_TIMEOUT if the timeout expired.

4.5.2.1.4 Example
void SR_SendCommand_Example(void)
{
UINT8 buf[256];
SR_STATUS_TYPE_E eReturnCode = SR_STATUS_ERROR;

strcpy((char *)buf, "ATS192?\r");
if((eReturnCode = SR_SendCommand(buf, 10)) == SR_STATUS_SUCCESS)
{
 printf("Received response: %s", (char *)buf);
}
else
{
 /* No response has been received */
}

return;
}

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
52 of 54

4.5.2.2 SR_SwitchMode
This function allows allows switching from command mode to data mode and vice versa;
when command mode is entered, all received M-Bus frames are discarded and every call to
SR_SendData or SR_ReceiveData will return SR_STATUS_ERROR; when data mode is
entered, every call to SR_SendCommand will return SR_STATUS_ERROR.

4.5.2.2.1 Prototype
The prototype of SR_SwitchMode is:

SR_STATUS_TYPE_E SR_SwitchMode(SR_MODE_E SRmode)

4.5.2.2.2 Parameters
The input parameter is:

< SRmode > It specifies which operating mode the module must be put in

4.5.2.2.3 Return Values
The function returns SR_STATUS_SUCCESS if swiching to the requested mode succeeds,
otherwise it returns SR_STATUS_ERROR if an error occurred.

4.5.2.2.4 Example
void SR_SwitchMode_Example(void)
{
SR_MODE_E eMode = COMMAND_MODE;
SR_MODE_E eReturnCode = SR_STATUS_ERROR;

if((eReturnCode = SR_SwitchMode(eMode)) == SR_STATUS_SUCCESS)
{
 /* Switching to command mode succeeded */
}
else
{
 /* Switching to command mode failed */
}

return;
}

4.5.3 Configuration file

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
53 of 54

SRtech.conf contains the parameters needed by the SR-Library to communicate with the M-
Bus module. It is formatted as follows:
…
It is a comment
[GROUP_TAG_1]
It is a comment
KEY_TAG_1 = VALUE_1
It is a comment
KEY_TAG_2 = VALUE_2
…
…
It is a comment
[GROUP_TAG_2]
It is a comment
KEY_TAG_1 = VALUE_1
It is a comment
KEY_TAG_2 = VALUE_2
…
…

Where:

- [GROUP_TAG_1] is the identifier of a group of parameters that follow this tag.
- KEY_TAG_1 is the identifier of a parameter
- VALUE_1 is the value of the parameter

Comments are indicated with the # character.

The following table shows the parameters required by the short range library for M-Bus.

GROUP_TAG KEY_TAG M/O/U Description
[UART] SerialPort M Serial port connected to short range module

Table 4.26

Important: If one of these values are not set or set with a wrong value the SR_Init function
returns an error.
Pay attention: Do not insert space or other characters after the value; it can cause an error
in the SR_Init function.

4.5.4 M-Bus Frame format and serial communication
Wireless M-Bus frames are composed of different blocks.
The first block is formatted as follows:

Short Range Libraries User Guide
1VV0300861 Rev.1 - 09/07/10

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page
54 of 54

L-Field (1
byte)

C-Field (1 byte) M-Field (2
bytes)

A-Field (6 bytes) CRC (2
bytes)

The second block is formatted as follows:

CI-Field (1 byte) Payload (max 15 bytes) CRC (2 bytes)

The third and subsequent blocks are formatted as follows:

Payload (max 16 bytes) CRC (2 bytes)

Only the first and second blocks are mandatory for a given frame. When M-Bus frames are
sent and received with the short range library, the different fields of the
SR_DATA_PACKET_T structure map to the fields of the M-Bus frame as explained in Table
4.8; for multi-byte values, the least significant byte is transmitted first.
The SRdata field of SR_DATA_PACKET_T contains the C-Field and CI-Field in the first and
second byte, and the payload in the next bytes; only the C-Field and CI-Field are mandatory
in an M-Bus frame. The SRlength field of SR_DATA_PACKET_T indicates the number of
bytes contained in SRdata and is the sum of the lengths of C-Field, CI-Field and payload; its
minimum value in a valid M-Bus frame is 2, corresponding to a frame without payload.
Telit M-Bus modules allow choosing different formats for frames exchanged through the
serial port. The short range library uses the format where serial frames contain the same
fields as M-Bus frames (except for CRC bytes, which are added by the M-Bus module); that
means setting the value 31 to both register 401 and register 402 of the M-Bus module (this is
done when calling SR_Init or performing a hard reset). For details on the configuration
registers of the M-Bus module refer to the Telit Wireless M-Bus user guide. The L-Field of
frames to be sent is calculated by the short range library by adding 8 to the SRlength
value; conversely, for received frames the SRlength value is calculated from the L-Field by
subtracting 8.
Telit M-Bus modules can use different serial baud rates. Since 19200 is the default value,
the short range library uses that speed to communicate with the M-Bus module; this means
that if a module is configured at a different baud rate the short range library does not work
with it.
Configuration of the M-Bus module resulting in a different format of frames exchanged
through the serial port will prevent operation of the short range library. For example, if a low
power mode is activated requiring a wake-up character to be sent to the module at the
beginning of each frame, the short range library is unable to communicate with the module in
data mode: when using low power operation, the wakeup pin of the module must be
asserted before calling SR_SendData.

	1 Introduction
	1.1 Scope
	1.2 Audience
	1.3 Contact Information, Support
	1.4 Open Source Licenses
	1.5 Product Overview
	1.6 Document Organization
	1.6.1 How to Use

	1.7 Text Conventions
	1.8 Acronyms
	1.9 Related Documents
	1.9.1 Internal
	1.9.2 External

	1.10 Document Change Log

	2 System requirements
	2.1 Hardware
	2.1.1 GG863-SR
	2.1.2 GE863 PRO3

	2.2 Software

	3 Libraries setup
	3.1 How to build a simple application with SR-Libraries

	4 Short Range Libraries
	4.1 Introduction
	4.2 Generic API
	4.2.1 Description
	4.2.1.1 Data Types
	4.2.1.1.1 Basic Types
	4.2.1.1.1.1 SR_VERSION_T

	4.2.1.1.2 Enumerations
	4.2.1.1.2.1 SR_RESET_TYPE_E
	4.2.1.1.2.2 SR_MODULE_TYPE_E
	4.2.1.1.2.3 SR_STATUS_TYPE_E

	4.2.1.1.3 Structures
	4.2.1.1.3.1 SR_DATA_PACKET_T
	4.2.1.1.3.2 SR_SCAN_RES_T
	4.2.1.1.3.3 SR_SCAN_INFO_T

	4.2.1.1.4 Symbolic Constants
	4.2.1.1.5 Macros
	4.2.1.1.6 Callbacks
	4.2.1.1.6.1 SR_DATA_CALLBACK_FP
	4.2.1.1.6.2 SR_STACK_CALLBACK_FP

	4.2.2 Functions Summary
	4.2.3 Functions Description
	4.2.3.1 SR_Init
	4.2.3.1.1 Prototype
	4.2.3.1.2 Parameters
	4.2.3.1.3 Return Values
	4.2.3.1.4 Example

	4.2.3.2 SR_Close
	4.2.3.2.1 Prototype
	4.2.3.2.2 Parameters
	4.2.3.2.3 Return Values
	4.2.3.2.4 Example

	4.2.3.3 SR_StartNet
	4.2.3.3.1 MeshLite behaviour
	4.2.3.3.2 ZigBee behaviour
	4.2.3.3.3 M-Bus behaviour
	4.2.3.3.4 Prototype
	4.2.3.3.5 Parameters
	4.2.3.3.6 Return Values
	4.2.3.3.7 Example

	4.2.3.4 SR_Reset
	4.2.3.4.1 MeshLite behaviour
	4.2.3.4.2 ZigBee behaviour
	4.2.3.4.3 M-Bus behaviour
	4.2.3.4.4 Prototype
	4.2.3.4.5 Parameters
	4.2.3.4.6 Return Values
	4.2.3.4.7 Example

	4.2.3.5 SR_ScanNet
	4.2.3.5.1 Prototype
	4.2.3.5.2 Parameters
	4.2.3.5.3 Return Values
	4.2.3.5.4 Example

	4.2.3.6 SR_SendData
	4.2.3.6.1 Prototype
	4.2.3.6.2 Parameters
	4.2.3.6.3 Return Values
	4.2.3.6.4 Example

	4.2.3.7 SR_ReceiveData
	4.2.3.7.1 Prototype
	4.2.3.7.2 Parameters
	4.2.3.7.3 Return Values
	4.2.3.7.4 Example

	4.2.3.8 SR_Ver
	4.2.3.8.1 Prototype
	4.2.3.8.2 Parameters
	4.2.3.8.3 Return Values
	4.2.3.8.4 Example

	4.2.3.9 SR_ScanResFree
	4.2.3.9.1 Prototype
	4.2.3.9.2 Parameters
	4.2.3.9.3 Return Values
	4.2.3.9.4 Example

	4.3 ZigBee Specific API
	4.3.1 Description
	4.3.1.1 Data Types
	4.3.1.1.1 Structures
	4.3.1.1.1.1 SRZB_DEV_ANNCE_T

	4.3.1.1.2 Symbolic Constants

	4.3.1.2 Configuration File
	4.3.1.2.1 Transmission options

	4.4 MeshLite Specific API
	4.4.1 Description
	4.4.1.1 Data Types
	4.4.1.2 Configuration File
	4.4.1.3 How to send and receive raw data using MeshLite technology

	4.5 M-Bus Specific API
	4.5.1 Description
	4.5.1.1 Data Types
	4.5.1.1.1 Enumerations
	4.5.1.1.1.1 SR_MODE_E

	4.5.2 Functions Description
	4.5.2.1 SR_SendCommand
	4.5.2.1.1 Prototype
	4.5.2.1.2 Parameters
	4.5.2.1.3 Return Values
	4.5.2.1.4 Example

	4.5.2.2 SR_SwitchMode
	4.5.2.2.1 Prototype
	4.5.2.2.2 Parameters
	4.5.2.2.3 Return Values
	4.5.2.2.4 Example

	4.5.3 Configuration file
	4.5.4 M-Bus Frame format and serial communication

