

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 2 of 155

DISCLAIMER

The information contained in this document is the proprietary information of Telit
Communications S.p.A. and its affiliates (“TELIT”).
The contents are confidential and any disclosure to persons other than the officers,
employees, agents or subcontractors of the owner or licensee of this document,
without the prior written consent of Telit, is strictly prohibited.
Telit makes every effort to ensure the quality of the information it makes available.
Notwithstanding the foregoing, Telit does not make any warranty as to the information
contained herein, and does not accept any liability for any injury, loss or damage of any
kind incurred by use of or reliance upon the information.
Telit disclaims any and all responsibility for the application of the devices characterized
in this document, and notes that the application of the device must comply with the
safety standards of the applicable country, and where applicable, with the relevant
wiring rules.
Telit reserves the right to make modifications, additions and deletions to this document
due to typographical errors, inaccurate information, or improvements to programs
and/or equipment at any time and without notice.
Such changes will, nevertheless be incorporated into new editions of this document.

Copyright: Transmittal, reproduction, dissemination and/or editing of this document as
well as utilization of its contents and communication thereof to others without express
authorization are prohibited. Offenders will be held liable for payment of damages. All
rights are reserved.

Copyright © Telit Communications S.p.A. 2010.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 3 of 155

Applicable Products

Linux SW Version Recommended
U-Boot version

06.0006
06.1006

21.00.0000
211.00.0000

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 4 of 155

Contents

Contents ... 4

1. Introduction .. 8

1.1. Scope .. 8

1.2. Audience ... 8

1.3. Contact Information, Support ... 8

1.4. Open Source Licenses .. 8

1.5. Product Overview.. 9

1.6. Document Organization .. 9

1.7. Text Conventions .. 10

1.8. Related Documents .. 10

1.9. Document History ... 11

2. GE863-PRO³ Architecture..12

2.1. Hardware .. 12

2.2. Software ... 15
2.2.1. Telit Bootloader... 16
2.2.2. Telit customized U-boot.. 16
2.2.3. Linux kernel... 17
2.2.4. Filesystem ... 21

3. System Startup ..25

3.1. Startup process .. 25

3.2. The Linux shell ... 26

3.3. Loading a module ... 27

3.4. Auto-Setup at system startup... 28

3.5. Time-based scheduling service .. 29

3.6. Downloading a file into GE863-PRO3 ... 30
3.6.1. Downloading a file using the Ethernet connection... 30
3.6.2. Downloading a file using an USB mass storage device ... 32
3.6.3. Downloading/Uploading a file using a serial port .. 33

3.7. Version statistics .. 34

4. Device Drivers ...35

4.1. Serial port .. 35

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 5 of 155

4.1.1. open()... 36
4.1.2. read() ... 37
4.1.3. write() .. 38
4.1.4. close() .. 38
4.1.5. termios interface... 39

4.2. I2C ... 51
4.2.1. Loading i2c modules ... 52
4.2.2. open()... 53
4.2.3. ioctl().. 54
4.2.4. read() ... 61
4.2.5. write() .. 62
4.2.6. close() .. 62
4.2.7. A Test Program ... 63

4.3. SPI .. 65
4.3.1. Loading the SPI module .. 65
4.3.2. open()... 66
4.3.3. ioctl().. 66
4.3.4. read() ... 69
4.3.5. write() .. 70
4.3.6. close() .. 70
4.3.7. A Test Program ... 71

4.4. GPIO.. 73
4.4.1. Loading the GPIO module ... 74
4.4.2. open()... 74
4.4.3. read() ... 74
4.4.4. write() .. 75
4.4.5. close() .. 76

4.5. Ge863pro3_GPIO... 77
4.5.1. Interrupt description ... 77
4.5.2. Loading the GPIO module ... 77
4.5.3. open()... 78
4.5.4. ioctl().. 79
4.5.5. read() ... 81
4.5.6. write() .. 82
4.5.7. Interrupt routine customization.. 83
4.5.8. close() .. 84
4.5.9. A Test Program ... 84

4.6. ADC... 86
4.6.1. Loading the ADC Module... 86
4.6.2. open()... 86
4.6.3. ioctl().. 87
4.6.4. read() ... 94
4.6.5. close() .. 95

4.7. SSC ... 96
4.7.1. Loading the SSC module... 96

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 6 of 155

4.7.2. open()... 97
4.7.3. ioctl().. 97
4.7.4. read() ... 100
4.7.5. write() .. 101
4.7.6. close() .. 102
4.7.7. A Test Program ... 102

4.8. Watchdog .. 104
4.8.1. open()... 104
4.8.2. ioctl().. 105
4.8.3. close() .. 107

4.9. Power Management .. 108
4.9.1. open()... 109
4.9.2. write() .. 109
4.9.3. close() .. 110

4.10. Real Time Clock (RTC)... 111
4.10.1. open()... 111
4.10.2. ioctl().. 112
4.10.3. close() .. 116
4.10.4. A Test Program ... 117

4.11. SD/MMC .. 120

4.12. Ethernet .. 120

4.13. USB ... 122
4.13.1. USB Mass Storage... 122
4.13.2. USB device (Ethernet Gadget)... 122

4.14. Timer Counter ... 123
4.14.1. Loading the Timer Counter Module.. 123
4.14.2. open()... 124
4.14.3. ioctl().. 125
4.14.4. close() .. 140

5. ISO7816 – Smartcard Reader ..141

5.1. ISO-7816 APIs ... 141
5.1.1. Defines... 142
5.1.2. Types.. 142
5.1.3. Enums.. 142
5.1.4. Functions... 143

6. CMUX...150

6.1. Code example ... 151

7. Using external flash memories ...153

7.1. Supported external flash memories ... 153

7.2. Erasing the flash memory .. 154

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 7 of 155

7.3. Mounting a JFFS2 file system... 154

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 8 of 155

1. Introduction

1.1. Scope
This user guide serves the following purpose:

 Provides details about the GE863-PRO³ software architecture.

 Describes how software developers can use the functions of Linux device
drivers to configure, manage and use GE863-PRO³ hardware resources and
system peripherals.

1.2. Audience
This User Guide is intended for software developers who develop applications on the
ARM processor of GE863-PRO³ module.

1.3. Contact Information, Support
For general contact, technical support, to report documentation errors and to order
manuals, contact Telit’s Technical Support Center (TTSC) at:

TS-EMEA@telit.com
TS-NORTHAMERICA@telit.com
TS-LATINAMERICA@telit.com
TS-APAC@telit.com

Alternatively, use:
http://www.telit.com/en/products/technical-support-center/contact.php
For detailed information about where you can buy the Telit modules or for
recommendations on accessories and components visit:
http://www.telit.com
To register for product news and announcements or for product questions contact
Telit's Technical Support Center (TTSC).
Our aim is to make this guide as helpful as possible. Keep us informed of your
comments and suggestions for improvements.
Telit appreciates feedback from the users of our information.

1.4. Open Source Licenses
Linux system is made up of many Open Source device drivers licensed as follows:

mailto:TS-EMEA@telit.com
mailto:TS-NORTHAMERICA@telit.com
mailto:TS-LATINAMERICA@telit.com
mailto:TS-APAC@telit.com
http://www.telit.com/en/products/technical-support-center/contact.php
http://www.telit.com/

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 9 of 155

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Please refer to the following web page for the full text of the license:

http://www.gnu.org/licenses/gpl-2.0.html

1.5. Product Overview
The GE863-PRO3 module contains a fully featured GSM/GPRS communications section,
compatible with the other Telit GSM/GPRS modules, but also incorporates a standalone
ARM9 CPU and memories, dedicated to user applications.

This eliminates the need for an external host CPU in many applications, bringing true
real-time and multi tasking capabilities to an embedded module.

1.6. Document Organization
This manual contains the following chapters:

 “Chapter 1, Introduction” provides a scope for this manual, target audience,
technical contact information, and text conventions.

 Chapter 2, GE863-PRO3 Architecture” provides an overview on GE863-PRO3
hardware and software architecture describing the main software components:
Telit Bootloader, Telit customized U-Boot, Linux kernel 2.6.24 and Filesystem.

 “Chapter 3, System Startup” describes how to perform the start up process,
how to download a file onto GE863-PRO3 and how to load a kernel module.

 “Chapter 4, Device Drivers” details Linux device drivers and shows how
software developers can use them to interact with GE863-PRO3 hardware
resources and peripherals.

 “Chapter 5, ISO7816 – Smartcard Reader” details the ISO-7816 library and
shows how software developers can use it to write applications for managing
smartcards.

http://www.gnu.org/licenses/gpl-2.0.html

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 10 of 155

 “Chapter 6, CMUX” describes GSM 7.10 multiplexing protocol implemented
by GE863-PRO³ and its use.

 “Chapter 7, Using external flash memories”, describes how external flash
memories can be connected to GE863-PRO³ and managed.

How to Use
If you mainly use this document as reference, the main chapters of interest are Chapter
3, System Startup and Chapter 4, Device Drivers.

If you are new to this product, it is recommended to start by reading through
TelitGE863PRO3 EVK User Guide 1VV0300776, TelitGE863PRO3_Linux_Development
1VV0300780 and this document in their entirety in order to understand and the concepts
and specific features provided by the built in software of the GE863-PRO3.

1.7. Text Conventions
This section lists the paragraph and font styles used for the various types of
information presented in this user guide.

Format Content
Courier Linux shell commands, filesystem paths and example C source code

1.8. Related Documents
The following documents are related to this user guide:

[1] TelitGE863PRO3 Hardware User Guide 1vv0300773a
[2] TelitGE863PRO3 U-BOOT Software User Guide 1vv0300777
[3] TelitGE863PRO3 EVK User Guide 1VV0300776
[4] TelitGE863PRO3 Linux Development Environment 1VV0300780
[5] TelitGE863PRO3 Linux GSM Library User Guide 1vv0300782
[6] TelitGE863PRO3 Product Description 80285ST10036a
[7] Telit AT Commands Reference Guide 80000ST10025a

All documentation can be downloaded from Telit’s official web site www.telit.com if not
otherwise indicated.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 11 of 155

1.9. Document History

RReevviissiioonn DDaattee CChhaannggeess
ISSUE #0 06-04-2008 First Release
ISSUE #1 07-31-2008 Added the following paragraphs:

4.5 Ge863pro3_GPIO
4.6 ADC
4.7 SSC
4.9 Power Management
4.10 RTC
5 ISO7816 – Smartcard Reader
7 Using external flash memories

ISSUE #2 05-21-2009 Updated write() function examples in paragraphs:
4.1.3, 4.2.5, 4.3.5, 4.4.4, 4.5.6, 4.7.5, and 4.9.2.
4.1.5 TERMIOS interface: Added
 Describes how tty devices can be configured.
Modified the following paragraph:
4.6.3 ADC ioctl()
4.6.4 ADC read() (example)
Added the following paragraphs:
3.5 Time-based scheduling service
4.1 Serial Port ttyS6 added to list
4.14 Timer Counter
6 CMUX escape command sequence
Preface: recommended U-Boot version

ISSUE #3 08-06-2009 Updated:
 Applicable Products
 2.1 Hardware

ISSUE #4 12-04-2009 Updated:
3.6.3 Downloading/Uploading a file using a serial port
3.7 Version statistics
5.1.4.3 iso7816_reset()
6 CMUX –v command line option
Applied new template

ISSUE #5 01/25/2010 Updated:
4.11 SD/MMC

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 12 of 155

2. GE863-PRO³ Architecture

2.1. Hardware
The GE863-PRO³ is an innovation to the quad-band, RoHS compliant GE863 product
family which includes a powerful ARM9™ processor core exclusively dedicated to
customer applications. The GE863-PRO³ incorporates much of the necessary hardware
for communicating microcontroller solutions, including the critical element of memory,
significant simplification of the bill of material, vendor management, and logistics effort
are achieved.

The Telit GE863-PRO3 comes in three main variants regarding the available flash and
RAM memory. All variants share the same high level architecture and most of the
concepts apply to all variants. Table below details the available variants and main
features.

Variant 4/8 4/64 128/64
Flash Memory 4 MB 4 MB 128 MB
Flash Memory type NOR NOR NAND
Flash Memory access Serial Serial Parallel
SDRAM Memory 8 MB 64 MB 64 MB
U-Boot version 21.00.0000 21.00.0000 211.00.0000
Linux FW Version (1) 21.06.0006 21.06.0006 211.06.1006

(1) Optional

Note – Versions 4/8 and 4/64 are practically equivalent for what is concerned U-Boot,
memory management and addressing. For sake of simplicity, we will differentiate between
4/64 and 128/64 versions, as 4/8 version is a subset of 4/64 one.

Below there is a simple plot and a list of the GE863-PRO³ key elements:

 Atmel AT91SAM9260 microcontroller (220 MIPS at 200Mhz, MMU, EmbeddedICE
Debug Communication Channel Support).

 RAM:
o 8MB or 64MB1 SDRAM Mobile for GE863-PRO34/8 and 4/64
o 64MB SDRAM Mobile Micron, Numonyx or Samsung for GE863-PRO3

128/64
 Flash:

o 4MB Serial Flash Atmel via SPI interface for GE863-PRO3 4/8 and 4/64
o 128MB Nand Parallel Flash Micron, Numonyx via EBI interfacefor

GE863-PRO3 128/64

1 Depends of product configuration that client choses

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 13 of 155

 Quad-band EGSM 850 / 900 / 1800 / 1900 Mhz.
 4 A/D with A/D trigger and 6 PWM D/A converters.
 1 USB device and 2 USB host.
 1 IIC interface.
 2 SPI bus interface
 1 SSC digital audio interface.
 1 image sensor interface
 6 USARTs and 1 UART
 1 MMC and SD cards interface
 Ethernet 10/100 MAC

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 14 of 155

The GE863-PRO³ is offered in a Ball-Grid-Array (BGA) package enabling a very low
profile and small product size required for the design of extremely compact

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 15 of 155

applications. With its extended programming capabilities in C/C++, the Telit GE863-
PRO³ is the ideal hardware platform for complete and compact customer solutions.

Application development is accomplished easily given Telit’s continued commitment to
open systems. With the use of LINUX, developers have access to an extensive library of
drivers for different peripherals and to complete development environments.

The GE863-PRO³ was designed to simplify connectivity through the availability of
interfaces such as SPI, IIC, SD/MMC and USB (Host/Device). Telit offers a vast
collection of reference designs enabling use of the PRO³ with external peripherals such
as camera, keyboard, display, Wi-Fi®, Bluetooth®, SmartCard, SD Card, Ethernet,
ZigBee® and GPS.

For further information about hardware refer to [1] .

2.2. Software
The GE863-PRO³ software architecture from a high level perspective is based on the
following components:

 Telit Bootloader
 Telit customized U-Boot
 Customized Linux kernel based on 2.6.24 version
 Filesystem

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 16 of 155

Telit Bootloader

Filesystem

Kernel

U-Boot

2.2.1. Telit Bootloader
Telit Bootloader is a small binary used for hardware-related management: its main
task is to load and start Telit customized U-Boot. For further details refer to [2] .

2.2.2. Telit customized U-boot
U-Boot is the Open Source "universal'' cross-platform bootloader supporting hundreds
of embedded boards and a wide variety of microcontrollers (the Atmel AT91SAM9260
included).

Some of the features provided by U-Boot are:

 Hardware initialization.
 Providing boot parameters for the Linux kernel.
 Starting the Linux kernel.
 Reading and writing memory locations.
 Uploading new binary images to the board's RAM.
 Copying binary images from RAM to FLASH memory.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 17 of 155

 Storing environment variables which can be used to configure the system.

The GE863-PRO³ has a customized version of U-Boot to get the most out of the board.
For further details refer to [2] .
Telit recommends running Telit Linux along with U-Boot images.

2.2.3. Linux kernel

2.2.3.1. Overview

The kernel is the central part of the GNU/Linux operating system: its main task is to
manage system’s resources in order to make the hardware and the software
communicate. A kernel usually deals with process management (including inter-
process communication), memory management and device management.

The Linux kernel belongs to the family of Unix-like operating system kernel; created in
1991, it has been developed by a huge number of contributors worldwide during these
years, becoming one of the most common and versatile kernel for embedded systems.

Below there is a schematic representing, from a high level perspective, the
architecture of a GNU/Linux operating system:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 18 of 155

User Space

Two regions can be identified:

1. User space: where the user applications are executed.
2. Kernel space: where the kernel (with all its components such as device drivers)

works.

These two regions are separated and have different memory address spaces; there are
several methods for user/kernel interaction:

 Using the System Call Interface that connects user to the kernel and provides
the mechanism to communicate between the user-space application and the
kernel through the C library.

 Using kernel calls directly from application code leaping over the C library.
 Using the virtual filesystem.

Hardware

KKeerrnneell SSppaaccee

User Applications

uclibc library

System Call Interface

Kernel

Architecture dependent kernel code

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 19 of 155

The ordinary C library in Linux system is the glibc. Uclibc is a C library mainly targeted
for developing embedded Linux systems; despite being much smaller than the glibc it
has almost all its features (including shared libraries and threading), making easy to
port applications from glibc to uclibc.

The Linux kernel architecture-independent code stays on the top of platform specific
code for the GE863-PRO³ board: this code allows exploiting all hardware features of the
GE863-PRO³.

Inside the kernel we can find, among the others, the following fundamental
components:

Device Drivers

Interprocess
Communication

Management

Network Services
Management

Memory Management

Process Management

Virtual Filesystem
Management

The Linux kernel is a monolithic one (i.e. all OS services run along with the main kernel
thread, thus also residing in the same memory area), but it has the capability to
dynamically load/unload some of its components called modules.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 20 of 155

A kernel module is a compiled piece of code which can be dynamically linked to the
kernel when is needed (becoming part of the kernel as the other normal kernel code)
then removed when it is no longer needed; modules are mainly used for device drivers.

2.2.3.2. The GE863-PRO³ Linux kernel

The Linux kernel on the GE863-PRO³ is based on version number 2.6.24. Below there is
a picture showing the kernel main components:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 21 of 155

The GE863-PRO³ Linux kernel comes with some of its features linked statically; while
others are compiled as modules (see the table below).
At the moment, available drivers are:

Driver Name Module Module Name Loaded by default
GPIO Y at91sam9260_gpio Y

GE863PRO3_GPIO Y ge863pro3_gpio N
MMC/SD N N/A Y
Ethernet Y macb N

Support for Host-side USB Y ohci-hcd N
Support for USB Mass

Storage
Y usb-storage

N

USB Ethernet Gadget Y g_ether N

I2C Y

i2c-core
i2c-algo-bit

i2c-dev
i2c-gpio

N

SPI Y spidev N
ADC Y adc_driver N
SSC Y ge863pro3_ssc N

2.2.4. Filesystem

2.2.4.1. Overview

A filesystem is the entity where the files are placed logically for storage and retrieval.
The filesystem also specifies conventions for naming files (e.g. maximum number of
characters for the file name). Usually the file system has a hierarchical-tree structure:
files are placed in directories inside this tree structure.

The GE863-PRO³ has the JFFS2, a log-structured file system specifically for use on
flash devices in embedded systems. It implements file compression with the following
formats: Zlib, LZO, Real time.

2.2.4.2. The filesystem structure

The image below shows the filesystem root tree.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 22 of 155

bin

dev

etc

home

lib

mnt

oldroot

proc

root

sbin

sys

tmp

usr

var

/

/bin

This directory contains essential tools and other programs (so called binaries): note
that, by default in the GE863-PRO³, a most of these files are symbolic link that depend
on Busybox (see paragraph 2.2.4.3). Moreover the Busybox binary is also placed under
this directory.

/dev

This directory contains files representing the system's various hardware devices. Here,
for example, can be found all the devices representing the various GPIOs.

/etc

This directory contains system configuration files, startup files other. Here, for example,
can be found the file fstab used for mounting the various devices in the filesystem.

/home

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 23 of 155

This directory contains the home directories of the various users.

/lib

This directory contains shared libraries requiered by programs; for example, here
there can be found the uclibc libraries. Moreover in its subdirectories there are the
various loadable kernel modules (for example the modules for USB Mass Storage
Devices): they can be easily recognized by the .ko extension.

/mnt

This directory contains the mount points2 for the various devices.

/oldroot

By default this directory is empty. It is used by the system for the startup process.

/proc

This directory contains virtual folders and files which represent the current state of the
kernel; for example here you can find info about the cpu (type cat /proc/cpuinfo).

/root

This directory is the home of the user root. By default it is empty.

/sbin

This directory contains executable files are mainly used by the root user for
administration task. By default in the GE863-PRO³, most of these files are symbolic
links that depend on Busybox (see paragraph 2.2.4.3).

/sys

This directory contains system files used for device configuration.

/tmp

This directory contains temporary files.

/usr

This directory contains files and directories related to user tools and applications. By
default in the GE863-PRO³ some of these files are symbolic links that depend on
Busybox (see paragraph 2.2.4.3).

/var

This directory contains variable data files.

2 The mount point is the location in the operating system's directory structure where a mounted file system
appears

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 24 of 155

2.2.4.3. Busybox

Inside the filesystem in the directory /bin there is the Busybox. Busybox gives the user
a set of commands useful to interact with the system; with it the user can carry out
normal tasks such as copying files (cp command), listing directories (ls command),
deleting files (rm command) etc. etc.

BusyBox combines tiny versions of many common UNIX utilities into a single small
executable. It provides replacements for most of the utilities usually found in a
GNU/Linux system. Note that the utilities in BusyBox generally have fewer options than
their full-featured GNU counterparts; however, the options that are included usually
satisfy the user’s needs and provide a fairly complete POSIX environment.

Busybox is composed of:

 A single binary placed in /bin, which is the real executor of the various utilities.
 A number of symbolic links through all the filesystem, having the name of the

various utilities (cp, ls, kill etc.) which refer to the Busybox binary.

To discover the currently defined commands for the GE863-PRO³, open a terminal
(refer to 3.1 for further details) and type:

cd /bin
./busybox

To see help content for any command type in the terminal:

<command name> --help

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 25 of 155

3. System Startup

3.1. Startup process
Connect the GE863-PRO³ to your host system via serial cable (use Debug port of the
EVK, for further details refer to document [3]). In your host system open a terminal
program (such as Hyper Terminal) and use the following parameters for the
connection:

Bits per second: 115200
Data bits: 8
Parity: None
Stop bits: 1
Flow Control: None

After turning on the GE863-PRO³ the following operations occur:

 The Telit Bootloader (refer to 2.2.1) starts and after initializing the hardware it
loads the U-Boot image from flash into RAM and runs it.

 Telit customized U-Boot (refer to 2.2.2) starts and in the terminal you should
see a countdown. If you wish to enter in U-Boot command mode (for further
details refer to document [2]) press any key, otherwise the startup process will
continue within a few seconds: U-Boot loads the kernel image in RAM then
starts it.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 26 of 155

 The kernel image decompresses itself and starts. After the initial sequence the
control is passed to the shell (refer to 3.2) which can be used to interact with the
target. At this point the system is ready to be used.

3.2. The Linux shell
The Linux shell is a user program that allows you to interact with the target by entering
commands from the keyboard; the shell parses the command, executes it and display
the output of the command on the screen.

When the target has finished booting, in the terminal the shell prompt will appear:

This means that the shell is ready to accept command: you can type in the terminal the
command you want to execute; for example:

ls

You should see the listing of the “/” directory as in the image below.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 27 of 155

3.3. Loading a module
To load a module type in the terminal:

modprobe <module name>

refer to 2.2.3.2 for modules’ name.

By default modprobe tries to load the module from the directory (and subdirectories)
where modules are usually stored. Some of the modules are dependent form others
and require loading of other modules first. modprobe commits to solve these
dependencies before loading the specified module.

To see which modules are currently loaded in the kernel use the lsmod command as
shown below:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 28 of 155

To unload a module type in the terminal:

rmmod <module name>

Beware that rmmod removes only modules which are not currently used or are not
needed by other modules as a dependency.

3.4. Auto-Setup at system startup
To automatically launch commands after boot create a script file in /etc/init.d/
called Sxy (where xy is a number starting from 00 to 99). Inside this file put all the
commands you need to be started after boot. For example, suppose you want to load
the Ethernet on USB module and to configure this interface: create the file
/etc/init.d/S00 and edit it with the following content:

modprobe g_ether
ifconfig usb0 192.168.1.3 netmask 255.255.255.0

At the next reboot the script should be executed automatically.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 29 of 155

3.5. Time-based scheduling service
crond is a daemon that allows to execute commands or scripts automatically at a
specified time/date. It wakes up every minute, examining all stored crontab files,
checking each command to see if it should be run in the current minute.

To enable crond daemon just type:

crond

crontab is the program used to install or list the crontab files used to drive the
crond.

To edit the current crontab file using the vi editor type:

crontab -e

After you exit from the editor, the modified crontab file will be installed
automatically.

The current crontab file will be displayed on standard output typing:

crontab –l

With regard to crontab file syntax, it has the following format as a series of fields,
separated by spaces and/or tabs where every line represents a job.

Job fields

Minute
(0-59)

Hour
(0-23)

Day of
Month
(1-31)

Month
(1-12)

Day of Week
(0-6)

(Sunday=0)

Command
to be

executed

The following ways allow to specify multiple date/time values in a field:

 The comma (',') operator specifies a list of values, for example: "1,3,4,7,8"
 The dash ('-') operator specifies a range of values, for example: "1-6", which is

equivalent to "1,2,3,4,5,6"
 The asterisk ('*') operator specifies all possible values for a field. For example,

an asterisk in the hour time field would be equivalent to 'every hour' (subject to
matching other specified fields).

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 30 of 155

For example, the following job will execute test.sh script at one minute past
midnight each day:

01 00 * * * ./test.sh

3.6. Downloading a file into GE863-PRO3
There are several ways to download a file in the target. In the following paragraphs you
can find explained three of these methods; for further details refer to document [4] .

3.6.1. Downloading a file using the Ethernet connection
Be sure to have the Telit Development Environment correctly installed (with an
Ethernet connection up) and coLinux started (refer to document [4] for further details).
In the host system go to Start → Telit Development Platform → Console: and the Linux
console will be opened. Type:

cd /mnt/windows

Now the current directory is where the Windows partition has been mounted.

Once identified the file to be copied, use the cp command in the following form:

cp –r <path where the file is>/<file name> /var/www/apache2-
default/

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 31 of 155

For example:

cp –r ARM/binaries/executable /var/www/apache2-default/

The file is ready to be uploaded in the target; open the terminal software (as explained
in 3.1) and, when the shell is ready, within the directory where you want to place the
uploaded file, type:

wget http://192.168.121.2/apache2-default/<file name>

You should see an output similar to that in the image below (supposing that the file is
called serialTest):

The ls command shows that the file has been downloaded.

To remove the file from the development environment type in the Linux console:

rm –rf /var/www/apache2-default/<file name>

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 32 of 155

3.6.2. Downloading a file using an USB mass storage device
Follow the procedure described in 4.13.1 for mounting the device (for example an USB
memory key). Then, type in the terminal:

cd /mnt/usbdev0

in order to have the current working directory in the USB mass storage device. Now the
file can be copied using the cp command:

cp <file name> <directory where the file is to be copied>

For example:

cp test.c /home/

The ls command shows that the file has been copied.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 33 of 155

3.6.3. Downloading/Uploading a file using a serial port
LRZSZ package allows file downloading and uploading by the means of a serial port
(see 4.1).
The supported protocols are YModem and ZModem.

The rz command downloads a file into GE863-PRO3 through a ttySX device. Below the
command synopsis:

rz protocol </dev/ttySX >/dev/ttySX

The protocol parameter can be one of the following:

--ymodem to use YModem protocol
--zmodem to use ZModem protocol

For example, to receive in the current directory a file from ttyS1 serial port by YModem
or ZModem protocol, type respectively:

rz --ymodem </dev/ttyS1 >/dev/ttyS1
rz --zmodem </dev/ttyS1 >/dev/ttyS1

To see a description of all rz command parameters, just type:

rz –h

The sz command uploads a file named infilename from GE863-PRO3 through a
ttySX device:

sz protocol infilename </dev/ttySX >/dev/ttySX

For example, to send the test file, from the current directory, to ttyS1 serial port by
YModem or ZModem protocol, type respectively:

sz --ymodem test </dev/ttyS1 >/dev/ttyS1
sz --zmodem test </dev/ttyS1 >/dev/ttyS1

To see a description of all sz command parameters, just type:

sz -h

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 34 of 155

3.7. Version statistics
Current versions of Telit bootloader, Telit customized U-boot and Linux installed onto
the target are shown by the ver command:

ver

Bootloader version 21

U-boot version 21

Linux version Telit-06.0006

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 35 of 155

4. Device Drivers
Under Linux OS devices distinguish among three fundamental types: char, block and
network. Each kernel module (see paragraph 2.2.3) usually implements one of these
types, and thus is classifiable as a char module, a block module, or a network module.
A char (character) device is one that can be accessed as a stream of bytes (like a file);
serial ports (e.g. /dev/ttyS0) are examples of char devices. A char driver usually
implements at least the open, close, read, and write system calls allowing this type of
communication.
Like char devices, block devices are accessed by filesystem nodes in the /dev
directory. A block device is a device (e.g., a disk) that can host a filesystem. Block and
char devices differ only in the way data is managed internally by the kernel, thus block
drivers have a completely different interface to the kernel than char drivers.
A network interface is a device that is able to exchange data with other hosts and is
controlled by a network driver. Not being a stream-oriented device, a network interface
doesn't have a corresponding entry in the filesystem.
Some types of drivers work with additional layers of kernel support functions for
dedicated device interface: for example USB devices are driven by a USB module that
works with the USB subsystem, but the devices themselves can be char devices (USB
serial ports), block devices (USB memory cards), or network devices (USB Ethernet
interfaces).

4.1. Serial port
As discussed above serial ports are char devices that can be accessed through the
following filesystem nodes available on the GE863-PRO³ (corresponding peripherals of
ARM9 processor are in parentheses):

ttyS0 used by the shell (DEBUG port)
ttyS1 available (UART0)
ttyS2 available (UART1)
ttyS3 available (UART2)
ttyS4 available (UART3)
ttyS5 available (UART4)
ttyS6 available (UART5)

Refer to document [3] for further information about hardware setup of serial ports
before using them.

If you want to test the ttyS1 serial port you can, for example, connect with a serial cable
your host pc and the GE863-PRO³ on ttyS1.
On GE863-PRO³’ shell type:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 36 of 155

cat /dev/ttyS1 &

in order to print on standard output any character received over this serial port.
Now open a terminal on you host pc (by default configured for 9600 data rate) and type,
for example,

hello<carriage return>

to write the “hello” test string over ttyS1.

If you want to set serial port baud rate, type on GE863-PRO³’ shell:

stty baudrate </dev/ttySx

For example, to set 115200 bps data rate for ttyS1, type:

stty 115200 </dev/ttyS1

The following subparagraphs show all the functions that can be used from C source
code to perform read/write operations on the serial devices.

4.1.1. open()
The open() function establishes the connection between a file and a file descriptor. The
file descriptor3 is used by other I/O functions to refer to that file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path

flags – an int specifying file opening mode: is one of O_RDONLY, O_WRONLY or O_RDWR
 which request opening the file read-only, write-only or read/write, respectively.

 In addition, zero or more file flags can be set, e.g.:
 O_NOCTTY: If pathname refers to a terminal device it will not become the

process's controlling terminal even in case the process does not have one.
 O_NDELAY or O_NONBLOCK: when possible, the file is opened in non-blocking

mode

3 Identifies ID of the file

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 37 of 155

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1

Example:
Open the /dev/ttyS1 device.

int fd: // file descriptor for /dev/ttyS1 entry

if ((fd = open(“/dev/ttyS1”, O_RDWR | O_NOCTTY | O_NDELAY)) < 0)
{
 /* ERROR MANAGEMENT ROUTINE */
} else {
 /* SERIAL PORT OPENED */
}

4.1.2. read()
The read() function reads nbyte bytes from the file associated with the open file
descriptor, fildes, and copies them in the buffer that is pointed to by buf.

Header file:
unistd.h

Prototype:
ssize_t read(int fildes, void *buf, size_t nbyte)

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that read() attempts to read

Returns:
The number of bytes actually read if operation is completed successfully, otherwise it is
-1

Example:
Read sizeof(read_buff) bytes from the file associated with fd and stores them into
read_buff.

char read_buff[BUFF_LEN];

if(read(fd, read_buff, sizeof(read_buff)) < 0)
{
 /* Error Management Routine */
} else {

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 38 of 155

 /* Value Read */
}

4.1.3. write()
The write() function writes nbyte bytes from the buffer that are pointed by buf to the file
associated with the open file descriptor, fildes.

Header file:
unistd.h

Prototype:
ssize_t write(int fildes, const void *buf, size_t nbyte)

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that write() attempts to write

Returns:
The number of bytes actually written if operation is completed successfully (this
number shall never be bigger than nbyte), otherwise it is -1

Example:
Write strlen(value_to_be_written) bytes from the buffer pointed to by
value_to_be_written to the file associated with the open file descriptor, fd.

char value_to_be_written[] = “Hello world\r\n”;

if (write(fd, value_to_be_written, strlen(value_to_be_written))
< 0)
{
 /* Error Management Routine */
} else {
 /* Value Written */
}

4.1.4. close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate
means to make the file descriptor available for subsequent calls to open() or other
functions that allocate file descriptors.

Header file:
unistd.h

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 39 of 155

Prototype:
int close(int fildes)

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1

Example:
Close the /dev/ttyS1 device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.1.5. termios interface
POSIX.1 defines a standard interface for querying and manage tty devices. This
interface is called termios and is defined in the system header file <termios.h>.
termios is essentially a data structure and a set of functions that manipulate it.

4.1.5.1. Structure and Types

The following data types (all unsigned int) are defined:

 tcflag_t – used for terminal modes
 cc_t – used for terminal special characters
 speed_t – used for terminal baud rates. The valid values for objects of type

speed_t, supported by the underlying hardware, are:

Value Description
B0 Hang-up
B9600 9600 baud
B19200 19200 baud
B38400 38400 baud
B57600 57600 baud
B115200 115200 baud

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 40 of 155

The termios structure is defined as shown below:

struct termios {
 tcflag_t c_iflag; /* input mode flags */
 tcflag_t c_oflag; /* output mode flags */
 tcflag_t c_cflag; /* control mode flags */
 tcflag_t c_lflag; /* local mode flags */
 cc_t c_cc[NCCS]; /* control characters */
 };

The c_iflag member controls input processing options. It affects whether and how the
terminal driver processes input before sending it to a program.
The c_oflag member controls output processing and determines if and how the
terminal driver processes program output before sending it to the screen or other
output device.
The c_cflag member controls the hardware characteristics of the terminal device.
The local mode flags, stored in c_lflag member, manipulate terminal characteristics,
such as whether or not input characters are echoed on the screen.
The c_cc array contains values for special character sequences, such as ^\ (quit) and
^H (delete), and how they behave.

Terminals operate in one of two modes, canonical (or cooked) mode, in which the
terminal device driver processes special characters and feeds input to a program one
line at a time, and non-canonical (or raw) mode, in which most keyboard input is
unprocessed and unbuffered. The shell is an example of an application that uses
canonical mode.

All the constant values, and their meaning, that can be set for the termios struct
members c_iflag, c_oflag, c_cflag and c_lflag are listed below:

Member Flag Description

BRKINT Signal interrupt on break
ICRNL Map CR to NL on input
IGNBRK Ignore break condition
IGNCR Ignore CR
IGNPAR Ignore characters with parity errors

c_iflag

INLCR Map NL to CR on input

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction fo without Telit Communications S.p.A. written authorization - All Rights Reserved page 41 of 155

rbidden

INPCK Enable input parity check
ISTRIP Strip character
IUCLC Map upper-case to lower-case on input (LEGACY)
IXANY Enable any character to restart output
IXOFF Enable start/stop input control
IXON Enable start/stop output control
PARMRK Mark parity errors

OPOST Post-process output
OLCUC Map lower-case to upper-case on output (LEGACY)
ONLCR Map NL to CR-NL on output
OCRNL Map CR to NL on output
ONOCR No CR output at column 0
ONLRET NL performs CR function
OFILL Use fill characters for delay
NLDLY

NL0

Newline character type 0
NL1

Newline character type 1

Select newline delay

CRDLY

CR0

Carriage-return delay type 0
CR1

Carriage-return delay type 1
CR2

Carriage-return delay type 2
CR3

Carriage-return delay type 3

Select carriage-return delays

c_oflag

TABDLY

TAB0

Horizontal-tab delay type 0

TAB1

Horizontal-tab delay type 1
TAB2

Horizontal-tab delay type 2
TAB3

Select horizontal-tab delays

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 42 of 155

Expand tabs to spaces

BSDLY

BS0

Backspace-delay type 0
BS1

Backspace-delay type 1

Select backspace delays

VTDLY

VT0
 Vertical-tab delay type 0
VT1
 Vertical-tab delay type 1

Select vertical-tab delays

FFDLY

FF0
 Form-feed delay type 0
FF1
 Form-feed delay type 1

Select form-feed delays

CSIZE

CS5
 5 bits
CS6
 6 bits
CS7
 7 bits
CS8
 8 bits

Character size

CSTOPB Send two stop bits, else one
CREAD Enable receiver
PARENB Parity enable
PARODD Odd parity, else even
HUPCL Hang up on last close
CLOCAL Ignore modem status lines

c_cflag

CRTSCTS Enable RTS/CTS (hardware) flow control.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 43 of 155

ECHO Enable echo
ECHOE Echo erase character as error-correcting backspace
ECHOK Echo KILL
ECHONL Echo NL
ICANON Canonical input (erase and kill processing)
IEXTEN Enable extended input character processing
ISIG Enable signals
NOFLSH Disable flush after interrupt or quit
TOSTOP Send SIGTTOU for background output

c_lflag

XCASE Canonical upper/lower presentation (LEGACY)

The special control characters of the c_cc array with the relative symbolic indices
(initial values) and meaning are:

Index Value
Control
Character

Description

VINTR 0x03 Ctrl-C
Send a SIGINT signal. Recognized when ISIG is set, and then not
passed as input.

VQUIT 0x1C Ctrl -\
Quit character. Send SIGQUIT signal. Recognized when ISIG is set,
and then not passed as input.

VERASE 0x7F DEL
Erase character. This erases the previous not-yet-erased
character, but does not erase past EOF or beginning-of-line.
Recognized when ICANON is set, and then not passed as input.

VKILL 0x15 Ctrl-U
Kill character. This erases the input since the last EOF or
beginning-of-line. Recognized when ICANON is set, and then not
passed as input.

VEOF 0x04 Ctrl-D

End-of-file character. More precisely: this character causes the
pending tty buffer to be sent to the waiting user program without
waiting for end-of-line. If it is the first character of the line, the
read() in the user program returns 0, which signifies end-of-file.
Recognized when ICANON is set, and then not passed as input.

VMIN - - Minimum number of characters for non-canonical read.
VEOL 0x00 NULL Additional end-of-line character. Recognized when ICANON is set.
VTIME - - Timeout in deciseconds for non-canonical read.

VEOL2 0x00 NULL
Yet another end-of-line character. Recognized when ICANON is
set.

VSTART 0x21 Ctrl-Q
Start character. Restarts output stopped by the Stop character.
Recognized when IXON is set, and then not passed as input.

VSTOP 0x23 Ctrl-S
Stop character. Stop output until Start character typed. Recognized
when IXON is set, and then not passed as input.

VSUSP 0x1A Ctrl-Z
Suspend character. Send SIGTSTP signal. Recognized when ISIG is
set, and then not passed as input.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 44 of 155

VLNEXT 0x16 Ctrl-V
Literal next. Quotes the next input character, depriving it of a
possible special meaning. Recognized when IEXTEN is set, and
then not passed as input.

VWERASE 0x17 Ctrl-W
Word erase. Recognized when ICANON and IEXTEN are set, and
then not passed as input.

VREPRINT 0x12 Ctrl-R
Reprint unread characters. Recognized when ICANON and IEXTEN
are set, and then not passed as input.

4.1.5.2. Functions

4.1.5.2.1. tcgetattr()

This method gets the parameters associated with the object referred by fd and stores
them in the termios structure referenced by termios_p.

Header file:
termios.h

Prototype:
int tcgetattr(int fd, struct termios *termios_p)

Parameters:
fd – filedescriptor relative to the tty device
termios_p – pointer to a termios structure

Returns:
0 if successful, -1 otherwise

Example:

if(tcgetattr(filedes, &serial_config) != 0)
 /* Error Management */

4.1.5.2.2. tcsetattr()

This method sets the parameters associated with the terminal and specifies when
changes have to take effect.

Header file:
termios.h

Prototype:
int tcsetattr(int fd, int optional_actions, const struct termios *termios_p)

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 45 of 155

Parameters:
fd – filedescriptor relative to the tty device
optional_actions – flag which specifies when the changes have to take effect. The
possible values are:

 TCSANOW: the change occurs immediately.
 TCSADRAIN: the change occurs after all output written to fd has been

transmitted. This function should be used when changing parameters that
affect output.

 TCSAFLUSH: the change occurs after all output written to the object referred
by fd has been transmitted, and all input that has been received but not read
will be discarded before the change is made.

termios_p – pointer to a termios structure

Returns:
0 if successful, -1 otherwise

Example:

if(tcsetattr(filedes, TCSANOW, &serial_config) != 0)
 /* Error Management */

4.1.5.2.3. tcsendbreak()

This method transmits a continuous stream of zero-valued bits for a specific duration,
if the terminal is using asynchronous serial data transmission. If duration is zero, it
transmits zero-valued bits for at least 0.25 seconds and no more than 0.5 seconds. If
duration is not zero, it sends zero-valued bits for some implementation-defined length
of time.

Header file:
termios.h

Prototype:
int tcsendbreak(int fd, int duration)

Parameters:
fd – filedescriptor relative to the tty device
duration – value used for transmit time

Returns:
0 if successful, -1 otherwise

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 46 of 155

Example:

if(tcsendbreak(filedes, d_time) != 0)
 /* Error Management */

4.1.5.2.4. tcdrain()

This method waits until all output written to the object referred to by fd has been
transmitted.

Header file:
termios.h

Prototype:
int tcdrain(int fd)

Parameters:
fd – filedescriptor relative to the tty device

Returns:
0 if successful, -1 otherwise

Example:

if(tcdrain(filedes) != 0)
 /* Error Management */

4.1.5.2.5. tcflush()

This method discards data written to the object referred to by fd but not transmitted, or
data received but not read, depending on the value of queue_selector.

Header file:
termios.h

Prototype:
int tcflush(int fd, int queue_selector)

Parameters:
fd – filedescriptor relative to the tty device
queue_selector – flag that indicates what action has to be performed. The possible
values are:

 TCIFLUSH: flushes data received but not read.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 47 of 155

 TCOFLUSH: flushes data written but not transmitted.
 TCIOFLUSH: flushes both data received but not read, and data written but not

transmitted.

Returns:
0 if successful, -1 otherwise

Example:

if(tcflush(filedes, TCIFLUSH) != 0)
 /* Error Management */

4.1.5.2.6. tcflow()

This method suspends transmission or reception of data on the object referred to by fd,
depending on the value of action.

Header file:
termios.h

Prototype:
int tcflow(int fd, int action)

Parameters:
fd – filedescriptor relative to the tty device
action – flag which specifies what action has to be performed. The possible values are:

 TCOOFF: suspends output.
 TCOON: restarts suspended output.
 TCIOFF: transmits a STOP character, which stops the terminal device from

transmitting data to the system.
 TCION: transmits a START character, which starts the terminal device

transmitting data to the system.

Returns:
0 if successful, -1 otherwise

Example:

if(tcflow(filedes, TCOON) != 0)
 /* Error Management */

4.1.5.2.7. cfmakeraw()

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 48 of 155

This method sets the flags stored in the termios structure to a state disabling all input
and output processing, giving a "raw I/O path", as follows:

termios_p->c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP
 | INLCR | IGNCR | ICRNL | IXON);
termios_p->c_oflag &= ~OPOST;
termios_p->c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG | IEXTEN);
termios_p->c_cflag &= ~(CSIZE | PARENB);
termios_p->c_cflag |= CS8;

Header file:
termios.h

Prototype:
void cfmakeraw(struct termios *termios_p)

Parameters:
termios_p – pointer to a termios structure

Returns:
None

Example:

cfmakeraw(&serial_config);

4.1.5.2.8. cfgetispeed()

This method returns the input baud rate stored in the termios structure.

Header file:
termios.h

Prototype:
speed_t cfgetispeed(const struct termios *termios_p)

Parameters:
termios_p – pointer to a termios structure

Returns:
A speed_t value indicating the input baud rate. Error conditions are not expected.

Example:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 49 of 155

speed_t input_speed;
input_speed = cfgetispeed(&serial_config);

4.1.5.2.9. cfgetospeed()

This method returns the output baud rate stored in the termios structure.

Header file:
termios.h

Prototype:
speed_t cfgetospeed(const struct termios *termios_p)

Parameters:
termios_p – pointer to a termios structure

Returns:
A speed_t value indicating the output baud rate. Error conditions are not expected.

Example:

speed_t output_speed;
input_speed = cfgetospeed(&serial_config);

4.1.5.2.10. cfsetispeed()

This method sets the input baud rate stored in the termios structure to speed, which
must be specified as one of the speed_t Bnnn constants listed above.

Header file:
termios.h

Prototype:
int cfsetispeed(struct termios *termios_p, speed_t speed)

Parameters:
termios_p – pointer to a termios structure
speed – the speed value to be set

Returns:
0 if successful, -1 otherwise

Example:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 50 of 155

if(cfsetispeed(&serial_config, B115200) != 0)
 /* Error Management */

4.1.5.2.11. cfsetospeed()

This method sets the output baud rate stored in the termios structure to speed, which
must be specified as one of the speed_t Bnnn constants listed above.

Header file:
termios.h

Prototype:
int cfsetospeed(struct termios *termios_p, speed_t speed)

Parameters:
termios_p – pointer to a termios structure
speed – the speed value to be set

Returns:
0 if successful, -1 otherwise

Example:

if(cfsetospeed(&serial_config, B115200) != 0)
 /* Error Management */

4.1.5.3. A Test Program

#include <termios.h>
#include <fcntl.h>
#include <string.h>

int SerOpen(char *serName, speed_t baudrate)
{
 int fd;
struct termios serCfg;
memset(&serCfg, 0, sizeof(serCfg));

if((fd = open(serName, O_RDWR)) < 0)
 return -1; /* Can't open port */
else
 /* Get the actual configuration */
 if(tcgetattr(fd, &serCfg) != 0)
 return -1; /* Can't get port parms */

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 51 of 155

/* Set the hardware flow control */
serCfg.c_cflag |= CRTSCTS;

/* Set the baud rates to baudrate (e.g. 115200->
baudrate=B115200) */
cfsetispeed(&serCfg, baudrate);
cfsetospeed(&serCfg, baudrate);

/* Set 8N1 config and other params. See cfmakeraw() description
*/
cfmakeraw(&serCfg);

/* Let the configuration take effect */
if(tcsetattr(fd, TCSANOW, &serCfg) != 0)
 return -1; /* Can't set port params */

return fd;
}

4.2. I2C
The GE863-PRO3 is provided with the Atmel Two-wire Interface (TWI). It is useful to
connect several components, like EEPROM and I2C compatible device, using a unique
two-wire bus.

In this chapter is described how to load I2C modules on the Linux Operating System and
how to do a little test with a C program that opens the I2C bus interface (i.e., /dev/i2c-0)
and writes some data on the device.

Although there are many I2C devices and chips, we can use a unique I2C kernel interface
composed by a core module used by both master and slave device modules. In the
following picture we can see the whole module structure:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 52 of 155

So, in our system, in order to use the I2C Interface, the following steps shall be
followed:

1. Load the i2c-core module;

2. Load the i2c-algo-bit module;

3. Load the i2c-dev module;

4. Load the i2c-gpio module and/or other adapter driver module(s);

5. Load your I2C device driver module(s).

However, you can find the list of all the available I2C loadable modules in the directory:
/lib/modules/your_kernel_version/kernel/drivers/i2c

4.2.1. Loading i2c modules

1. The module i2c-core is used by every other I2C modules, so it must be loaded
first.

To load this module type the command

modprobe i2c-core

2. The i2c-algo-bit module implements a generic algorithm for the
communications on the bus. If you need a more specific algorithm, you can
modify the i2c-algo-bit source file or implement another module that uses i2c-
algo-bit.

To load the i2c-algo-bit module type the command

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 53 of 155

modprobe i2c-algo-bit

1. The i2c-dev module implements a useful tool that allows the user to access all devices
on an adapter from userspace, through the /dev interface. So we’ll have one item in
the /dev directory for each bus adapter in our system. Each registered i2c adapter
gets a number, counting from 0. I2C device files are character device files with major
device number 89 and a minor device number corresponding to the number assigned
as explained above. So, for example, we’ll have in /dev the following files: i2c-0, i2c-
1, ..., i2c-10, ... All 256 minor device numbers are reserved for i2c.

To load the i2c-dev module type the command

modprobe i2c-dev

2. The i2c-gpio module is an adapter driver or, in other words, a bus controller for the
GPIO bus. If we don’t load adapter driver we won’t be able to find any item in the /dev
directory. So we have to load one adapter driver for each I2C bus in our system. In this
case, we’ll have only one bus and its correspondent driver.

To load the i2c-gpio module type the command

modprobe i2c-gpio

3. Of course you’ll need to use the I2C Interface to connect I2C chips or devices to your
system. So, after loading the previous modules, you may also need to load the driver
module(s) of your specific device(s). In order to do this, you can use the modprobe
command followed by your module’s name.

4.2.2. open()
The open() function establishes the connection between a file and a file descriptor. The
file descriptor is used by other I/O functions to refer to opened file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 54 of 155

flags – an int specifying file opening mode: that can be O_RDONLY, O_WRONLY or
O_RDWR which requests opening the file read-only, write-only or read/write,
respectively

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1

Example:
Open the /dev/i2c-0.

int fd; // file descriptor for the /dev/i2c-0 entry

if((fd = open("/dev/i2c-0", O_ RDWR) < 0)
{
 /* Error Management Routine */
} else {
 /* I2C Device Opened */
}

4.2.3. ioctl()
The ioctl() function manipulates the underlying device parameters. In particular, many
operating characteristics can be controlled with ioctl() requests.

Header file:
sys/ioctl.h

Prototype:
int ioctl(int fildes, int request, ...)

Parameters:
fildes – file descriptor
request – device-dependent request code.

 The following ioctls request codes can be used for I2C:

 I2C_SLAVE, I2C_SLAVE_FORCE: to select the slave address
 I2C_TENBIT: to set the ten bit addressing
 I2C_PEC: to enable the packet error checking
 I2C_FUNCS: to get the adapter functionality mask
 I2C_RDWR: to do a combined read/write transaction
 I2C_SET_RATE, I2C_GET_RATE: to set/get the I2C clock rate
 I2C_SMBUS: to use SMBus functionalities
 I2C_RETRIES: to set the number of retries when not acknowledged
 I2C_TIMEOUT: to set the timeout value.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 55 of 155

The third argument is a void * and depends on the ioctl request code used: see the
examples below.

Returns:
0 if operation is completed successfully, otherwise it is -1

Examples:

 I2C_SLAVE, I2C_SLAVE_FORCE

Both set or change the slave address for the device opened with file_descriptor.
The address is passed in the 7 lower bits of the addr argument (except for 10 bit
addresses, passed in the 10 lower bits). With the I2C_SLAVE_FORCE request, the
address passed is used as slave address even in case it’s already in use by another
program or driver.
Example:

long addr = 0x5;
ret = ioctl(file_descriptor,I2C_SLAVE, addr);
if (ret < 0)
printf("An error occurred in ioctl");

 I2C_TENBIT

Selects ten bit addresses if the “select” argument does not equal 0, selects normal 7
bit addresses if the “select” argument equals 0. The default value is 0. This request is
only valid if the adapter has I2C_FUNC_10BIT_ADDR.
Example:

long select = 0;
ret = ioctl(file_descriptor,I2C_TENBIT, select);

 I2C_PEC

Selects SMBus PEC (Packet Error Checking) generation and verification if “select”
argument does not equal 0, disables if select equals 0. The default value is 0. It is used
only for SMBus transactions. This request only has an effect if the adapter has
I2C_FUNC_SMBUS_PEC (this might not be available and will have no effect).
Example:

long select = 0;
ret = ioctl(file_descriptor,I2C_PEC, select);

 I2C_FUNCS

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 56 of 155

Gets the adapter functionality mask and puts it in *funcs.
Example:

unsigned long funcs;
user = ioctl(file_descriptor,I2C_FUNCS, &funcs);

After this call, the funcs mask should be equal to FFF800F, the hexadecimal value for
1111111111111000000000001111, which indicates that the following adapter
functionalities are available:

I2C_FUNC_I2C
I2C_FUNC_10BIT_ADDR

I2C_FUNC_PROTOCOL_MANGLING
I2C_FUNC_SMBUS_HWPEC_CALC
I2C_FUNC_SMBUS_BLOCK_PROC_CALL
I2C_FUNC_SMBUS_QUICK
I2C_FUNC_SMBUS_READ_BYTE
I2C_FUNC_SMBUS_WRITE_BYTE
I2C_FUNC_SMBUS_READ_BYTE_DATA
I2C_FUNC_SMBUS_WRITE_BYTE_DATA
I2C_FUNC_SMBUS_READ_WORD_DATA
I2C_FUNC_SMBUS_WRITE_WORD_DATA
I2C_FUNC_SMBUS_PROC_CALL
I2C_FUNC_SMBUS_READ_BLOCK_DATA
I2C_FUNC_SMBUS_WRITE_BLOCK_DATA
I2C_FUNC_SMBUS_READ_I2C_BLOCK
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK
I2C_FUNC_SMBUS_BYTE
I2C_FUNC_SMBUS_BYTE_DATA
I2C_FUNC_SMBUS_WORD_DATA
I2C_FUNC_SMBUS_BLOCK_DATA
I2C_FUNC_SMBUS_I2C_BLOCK

Of course, if the funcs mask is different from FFF800F, the system will support
different functionalities. See the i2c.h file in the linux source tree for the available
functionalities.

 I2C_RDWR

Do a combined read/write transaction without break in between. This is valid only if the
adapter has I2C_FUNC_I2C.
The difference between doing normal read/write calls and using an ioctl with the
I2C_RDWR request is that in the second case you can do the several read or write using
the repeated start condition between two messages. If you use multiple calls to read
and write functions instead of the ioctl with the I2C_RDWR request, you’ll send

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 57 of 155

messages with a stop condition between them. The argument of the ioctl call is a
pointer to a

 struct i2c_rdwr_ioctl_data {
 struct i2c_msg *msgs; /* ptr to array of simple messages
*/
 int nmsgs; /* number of messages to exchange
*/
 }

where nmsgs is the number of messages to exchange. These messages are contained
in the struct i2c_msg pointer that points to an array of structures with following
definition:

struct i2c_msg {
__u16 addr; /* slave address */

__u16 flags;
__u16 len; /* msg length */
__u8 *buf; /* pointer to msg data */

};

In the addr field you have to put the address of the slave device you want to
communicate with. In the flags field you have to set the options among the ones listed
below:

I2C_M_TEN: setting this option you indicate that the address in the addr field is
composed by ten bits, so you’ll use the ten bit address mode;
I2C_M_RD: if set, a read operation will be performed; if you don’t set it, it’ll
automatically do a write operation;
I2C_M_NOSTART: if set, there won’t be any start condition during the sending of this
message with the i2c protocol;
I2C_M_REV_DIR_ADDR: you should set this flag if you want to do a write, but need to
simulate the process of a Read instead of a normal Write, or vice versa;
I2C_M_IGNORE_NAK: Normally a message is interrupted immediately if there is NACK
from the client. Setting this flag treats any NACK as an ACK, and all subsequent
messages are sent.
I2C_M_NO_RD_ACK: in a read message, the ACK/NACK bit from the master is skipped.

The struct i2c_msg also contains a pointer into a data buffer. The function will write
or read data to or from that buffer depending on whether the I2C_M_RD flag is set or
not in the flags field of a particular message. Finally, in the len field you have to set
the number of bytes you want to be read (written) to (from) the array pointed by buf.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 58 of 155

In the following example we suppose that our slave device is an EEPROM. We want to
read a data from a specific internal address of the EEPROM, in this case the address is
0x0. First we have to do a write with the internal address, and then a read of the data:

struct i2c_rdwr_ioctl_data work_queue;
char buf[1];
struct i2c_msg msgs[2];

buf[0]=0x0; //this is the internal address

msgs[0].len = 1;
msgs[0].flags = 0;
msgs[0].addr = 0x50; //this is the device address
msgs[0].buf = buf;

msgs[1].addr = addr;
msgs[1].flags = I2C_M_RD;
msgs[1].len = 255;
msgs[1].buf = buf2;

work_queue.msgs = msgs;
work_queue.nmsgs = 2;

ret = ioctl(fd,I2C_RDWR,&work_queue);
if (ret < 0) {
 printf("Error during I2C_RDWR ioctl with error
code: %d\n",ret);
}
else{
printf("The value read at address %X
is %s\n",buf[0],work_queue.msgs[1].buf);
}

 I2C_SET_RATE, I2C_GET_RATE

The I2C clock rate can be reduced setting a prescalar value that divide the master clock
rate for the use on I2C. So, if we call “arg” the prescalar value, the I2C clock frequency is
about (500 / (arg + 1)) kHz. To set this prescalar value, call the ioctl function with the
I2C_SET_RATE option. The allowed prescalar values ranges from 0 (which means “fully
master clock rate use“) to I2C_LOW_RATE (which corresponds to 50). Any other value
won’t be accepted. In the following code we can see an example where we divide by two
the master clock rate:

ret = ioctl(fd,I2C_SET_RATE, 1);
if (ret < 0) {

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 59 of 155

 printf("Error during I2C_SET_RATE ioctl with error
code: %d\n",ret);
}

If you want to know the current prescalar value, use I2C_GET_RATE following this
example:

int value;
ret = ioctl(fd,I2C_RDWR,&value);
if (ret < 0) {
 printf("Error during I2C_GET_RATE ioctl with error
code: %d\n",ret);
}

 I2C_SMBUS

The SMBus protocol is essentially a subset of the I2C protocol, so it can be easily
implement in our system. An ioctl with the I2C_SMBUS option can be used to do a
SMBus transfer, using the following data structure:

struct i2c_smbus_ioctl_data {

__u8 read_write;
 __u8 command;
 __u32 size;
 union i2c_smbus_data {
 __u8 byte;
 __u16 word;
 __u8 block[I2C_SMBUS_BLOCK_MAX + 2];

// block[0] is used for length
 // and one more for user-space
compatibility

} *data;
};

The read_write variable must be configured with I2C_SMBUS_READ, if you need to
do a read operation or with I2C_SMBUS_WRITE if you need to do a write operation. If
this field is set with a different value the ioctl call will fail.
The command field value is always valid (is not checked by the driver) because it can be
set with a command specific of your SMBus slave device. It functionally corresponds to
the first location of the buf field of a struct i2c_msg.
The size value specifies the data format you need for the transfer. It can be:

 I2C_SMBUS_QUICK: to perform a SMBus quick command. In this case the
*data field must be set to NULL;

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 60 of 155

 I2C_SMBUS_BYTE: to perform a byte read or write, depending on the
read_write field value. The *data field must be set to NULL. In the write case,
the byte that will be wrote is the command field value;

 I2C_SMBUS_BYTE_DATA: to perform a byte data read or write, depending on
the read_write field value. The I2C_SMBUS_BYTE_DATA option differs from
the I2C_SMBUS_BYTE option because it sends to the slave device both a one
byte command and a byte of data;

 I2C_SMBUS_WORD_DATA: it is the analog of the I2C_SMBUS_BYTE_DATA to
read or write a word data;

 I2C_SMBUS_BLOCK_DATA: to perform a data block read or write. The
maximum size allowed for the data block is 32 bytes;

 I2C_SMBUS_PROC_CALL: to perform a process call, that is a Write Word
followed by a Read Word. In this case the read_write field value will be
ignored by the driver, but however if you set it with a value different from
I2C_SMBUS_READ or I2C_SMBUS_WRITE, the ioctl will fail;

 I2C_SMBUS_BLOCK_PROC_CALL: to perform a process call using a 32 byte
block of data. If M is the number of bytes wrote in the process call and N is the
number of bytes read, M+N must be minor or equal to 32;

 I2C_SMBUS_I2C_BLOCK, I2C_SMBUS_I2C_BLOCK_BROKEN: to perform “I2C
block” read or write, depending on the read_write field value. The use of the
first option or the “broken” version depends on your preferences, because in
any case the driver will convert your call into the I2C_SMBUS_I2C_BLOCK
version.

If the size field is set with a value different from the ones listed above, the ioctl call
will fail.
For further information about the SMBus data formats and the specification of all the
available commands, see the SMBus Documentation.
Finally, the *data field is a pointer to the data you want to send or receive through the
SMBus transfer.

In the following example, we want to write a byte of data to the slave device:

struct i2c_smbus_ioctl_data mycmd;
union i2c_smbus_data tmp;

mycmd.read_write = I2C_SMBUS_WRITE;
mycmd.command = 0xF7;
mycmd.size = I2C_SMBUS_BYTE_DATA;
tmp.byte = 0xA0;
mycmd.data = &tmp;
ret = ioctl(f,I2C_SMBUS,&mycmd);
 if (ret < 0)
 printf("An error occurred in ioctl");

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 61 of 155

 I2C_RETRIES

Sets the number of times a device address should be polled when not acknowledging.
Example:

unsigned long num_retries = 4;
res = ioctl(file_descriptor,I2C_RETRIES, num_retries);

 I2C_TIMEOUT

With this macro you can set the timeout value in jiffies.
Example:

unsigned long jiffies = 100;
res = ioctl(file_descriptor,I2C_TIMEOUT, jiffies);

4.2.4. read()
The read() function reads nbyte bytes from the file associated with the open file
descriptor, fildes, and copies them in the buffer that is pointed to by buf.

Header file:
unistd.h

Prototype:
ssize_t read(int fildes, void *buf, size_t nbyte)

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that read() attempts to read

Returns:
The number of bytes actually read if if operation is completed successfully, otherwise it
is -1.

Example:
Read sizeof(read_buff) bytes from the file associated with fd and stores them into
read_buff.

char read_buff[BUFF_LEN];

if(read(fd, read_buff, sizeof(read_buff)) < 0)

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 62 of 155

{
 /* Error Management Routine */
} else {
 /* Value Read */
}

4.2.5. write()
The write() function writes nbyte bytes from the buffer that are pointed by buf to the file
associated with the open file descriptor, fildes.

Header file:
unistd.h

Prototype:
ssize_t write(int fildes, const void *buf, size_t nbyte)

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that write() attempts to write

Returns:
The number of bytes actually written if operation is completed successfully (this
number shall never be greater than nbyte), otherwise it is -1.

Example:
Write strlen(value_to_be_written) bytes from the buffer pointed by value_to_be_written
to the file associated with the open file descriptor, fd.

char value_to_be_written[] = “dummy_write”;

if (write(fd, value_to_be_written, strlen(value_to_be_written))
< 0)
{
 /* Error Management Routine */
} else {
 /* Value Written */
}

4.2.6. close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate
means to make the file descriptor available for subsequent calls to open() or other
functions that allocate file descriptors.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 63 of 155

Header file:
unistd.h

Prototype:
int close(int fildes)

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1

Example:
Close the I2C device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.2.7. A Test Program

The following simple C program is useful to test the I2C interface. It opens the /dev/i2c
interface and calls the write function in an infinite loop to write some random values on
the device.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/i2c.h>
#include <linux/i2c-dev.h>

int main()
{
 int fd;
 char val;

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 64 of 155

 char buf[5];
 int addr = 0x40; /* This I2C address is a random value
because no device is attached
 on the bus; if you connect a device,

change this value with the correct one*/
 fd = open("/dev/i2c-0",O_RDWR);
 if (fd < 0) {
 fprintf(stderr, "Error during open\n");
 exit(1);
 }

 /* The following ioctl call sets in slave mode

 the device located at the addr address */
 if (ioctl(fd, I2C_SLAVE, addr) < 0) {
 fprintf(stderr, "Error during IOCTL\n");
 exit(1);
 }
 buf[0] = 'T';
 buf[1] = 'e';
 buf[2] = 's';
 buf[3] = 't';

 for(val=1;;val=(val+1)%255) {
 buf[4] = val;
 if (write(fd, buf, 5) != 5) {
 fprintf(stderr, "Write error
(%d)\n",val);
 } else {
 fprintf(stderr, "Write OK (%d)\n",val);
 }
 usleep(500000);
 }
 return 0;
}

If you have some I2C device connected to the board, you’ll have to set the addr variable
with the correct address of the I2C device you want to write. Otherwise, you can initialize
that variable with a random value. In this case, you can connect an oscilloscope to the
SDA and SCL pins of the board to observe the behaviour of the signal on the pins.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 65 of 155

If you connect an I2C device to the board the write call should be successful and the
program should report “Write OK”. Otherwise the program displays “Write error”, but
this is not a problem: it only means that there is no device connected on the bus.

4.3. SPI
The "Serial Peripheral Interface" (SPI) is a synchronous four wire serial link used to
connect microcontrollers to sensors, memory, and peripherals.
The Serial Peripheral Interface is essentially a shift register that serially transmits data
bits to other SPIs. During a data transfer, one SPI system acts as the “master”' and
controls the data flow, while the other devices act as “slaves''.

The SPI system consists of two data lines and two control lines:

• Master Out Slave In (MOSI): This data line supplies the output data from
the master shifted into the input(s) of the slave(s).

• Master In Slave Out (MISO): This data line supplies the output data from
a slave to the input of the master. There may be no more than one slave
transmitting data during any particular transfer.

• Serial Clock (SPCK): This control line is driven by the master and
regulates the flow of the data bits. The master may transmit data at a
variety of baud rates; the SPCK line cycles once for each bit that is
transmitted.

• Slave Select (NSS): This control line allows slaves to be turned on and
off by hardware (it is also called chipselect).

4.3.1. Loading the SPI module
The SPI driver is released to customer under in the form of a loadable module.

To load the SPI module type in the terminal:

modprobe spidev

When loaded, the SPI driver will install four new devices named spidev1.X, under
the /dev/ directory. The first number in the “1.X” name extension represents the
number of the selected SPI bus while the second represents the selected chipselect
(from 0 to 3).

Once installed the SPI device can be used as a normal character device and can be
accessed by any application running in userspace.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 66 of 155

4.3.2. open()
The open() function shall establish the connection between a file and a file descriptor.
The file descriptor is used by other I/O functions to refer to the opened file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path
flags – is an int specifying file opening mode: is one of O_RDONLY, O_WRONLY or

O_RDWR which request opening the file read-only, write-only or read/write,
respectively

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1.

Example:
Open the /dev/spidev1.1.

int fd; // file descriptor for the /dev/spidev1.1 entry

if((fd = open("/dev/spidev1.1", O_ RDWR) < 0)
{
 /* Error Management Routine */
} else {
 /* SPI Device Opened */
}

4.3.3. ioctl()
The ioctl() function manipulates the underlying device parameters. In particular, many
operating characteristics can be controlled with ioctl() requests.

Header file:
sys/ioctl.h
linux/spi/spidev.h

Prototype:
int ioctl(int fildes, int request, ...)

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 67 of 155

Parameters:
fildes – file descriptor
request – device-dependent request code.
 The following ioctls request codes can be used for SPI:

 SPI_IOC_RD_MODE and SPI_IOC_WR_MODE to get/set the SPI mode
 SPI_IOC_RD_BITS_PER_WORD and SPI_IOC_WR_BITS_PER_WORD to get/set

the number of bits per words exchanged
 SPI_IOC_RD_MAX_SPEED_HZ and SPI_IOC_WR_MAX_SPEED_HZ to get/set the

maximum allowed speed
 SPI_IOC_MESSAGE to exchange data in full duplex mode

The third argument is a void * and depends on the ioctl request code used: see the
examples below.

Returns:
0 if operation is completed successfully, otherwise it is -1.

Examples:

 SPI_IOC_RD_MODE and SPI_IOC_WR_MODE

Get (RD) or set (WR) the SPI mode. The third parameter is a pointer to a byte which will
return (RD) or assign (WR) the SPI transfer mode.
The constant values defined in the “spidev.h” file will be used to set the SPI mode.
Please note that SPI_CS_HIGH, SPI_CPHA, SPI_CPOL and SPI_MODE_0..SPI_MODE_3
are the only constant values, listed in the “spidev.h” file, supported by the current SPI
driver.
Example:

uint8_t mode;
mode = SPI_CS_HIGH|SPI_CPOL|SPI_CPHA;/* Beware! this is just an
example. Check your device before setting these fields*/
ret = ioctl(fd, SPI_IOC_WR_MODE, &mode);
if (ret == -1)
 printf("can't set SPI mode");

 SPI_IOC_RD_BITS_PER_WORD and SPI_IOC_WR_BITS_PER_WORD

Get (RD) or set (WR) the number of bits per word exchanged. The third parameter is a
pointer to a byte which will return (RD) or assign (WR) the number of bits in each SPI
transfer word.
Example:

uint8_t bits;

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 68 of 155

ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits);
if (ret == -1)
 printf("can't set bits per word");

 SPI_IOC_RD_MAX_SPEED_HZ and SPI_IOC_WR_MAX_SPEED_HZ

Get (RD) or set (WR) the SPI max speed. The third parameter is a pointer to a uint32_t
which will return (RD) or assign (WR) the maximum SPI transfer speed, in Hz. It is not
required that the controller assigns specific clock speed.
Example:

uint32_t speed;
ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
if (ret == -1)
 printf("can't set max speed hz");

 SPI_IOC_MESSAGE

Standard read() and write() operations are obviously only half-duplex, and the
chipselect is deactivated between those operations. Full-duplex access, and composite
operation without chipselect de-activation, is available using the SPI_IOC_MESSAGE(N)
request.
Please note that the SPI_IOC_MESSAGE(N) request needs, as parameter, a pointer to
struct spi_ioc_transfer whose fields speed_hz and bits_per_word must
be set to 0.

Example:

uint8_t tx[] = {
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0x40, 0x00, 0x00, 0x00, 0x00, 0x95,
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xDE, 0xAD, 0xBE, 0xEF, 0xBA, 0xAD,
 0xF0, 0x0D,
 };
uint8_t rx[ARRAY_SIZE(tx)] = {0, };
 struct spi_ioc_transfer tr = {
 .tx_buf = (unsigned long)tx,
 .rx_buf = (unsigned long)rx,
 .len = ARRAY_SIZE(tx),
 .delay_usecs = delay,/*Delay before chipselect
deactivation*/

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 69 of 155

 .speed_hz = 0,/* Must be set to 0 */
 .bits_per_word = 0,/* Must be set to 0*/
 };
 for (i = 0; i < 100 ; i++)
 {
 ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr);
 if (ret == -1)
 printf("can't send spi message");
 }

4.3.4. read()
The read() function reads nbyte bytes from the file associated with the open file
descriptor, fildes, and copies them in the buffer that is pointed to by buf.

Header file:
unistd.h

Prototype:
ssize_t read(int fildes, void *buf, size_t nbyte)

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that read() attempts to read

Returns:
The number of bytes actually read if operation is completed successfully, otherwise it is
-1.

Example:
Read sizeof(read_buff) bytes from the file associated with fd and stores them in
read_buff.

char read_buff[BUFF_LEN];

if(read(fd, read_buff, sizeof(read_buff)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Read */
}

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 70 of 155

4.3.5. write()
The write() function writes nbyte bytes from the buffer that are pointed by buf to the file
associated with the open file descriptor, fildes.

Header file:
unistd.h

Prototype:
ssize_t write(int fildes, const void *buf, size_t nbyte)

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that write() attempts to write

Returns:
The number of bytes actually written if operation is completed successfully, (this
number shall never be greater than nbyte), otherwise it is -1

Example:
Write strlen(value_to_be_written) bytes from the buffer pointed by value_to_be_written
to the file associated with the open file descriptor, fd.

char value_to_be_written[] = “dummy_write”;

if (write(fd, value_to_be_written, strlen(value_to_be_written))
< 0)
{
 /* Error Management Routine */
} else {
 /* Value Written */
}

4.3.6. close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate
means to make the file descriptor available for subsequent calls to open() or other
functions that allocate file descriptors.

Header file:
unistd.h

Prototype:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 71 of 155

int close(int fildes)

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1

Example:
Close the SPI device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.3.7. A Test Program
Below it is reported a simple piece of code that opens the device, writes some random
data, reads some data if available and then closes the devices. Please note that the
following code works for half duplex communication. For typical full duplex
communication the SPI_IOC_MESSAGE ioctl will be used.
In order to receive data when executing the read() function a transmitting SPI
peripheral must be connected.

#include <stdint.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>

#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
static const char *device = "/dev/spidev1.1";

static void myTransfer(int fd)
{
 int ret;
 int i = 0;
 uint8_t tx[] = {
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 72 of 155

 0x40, 0x00, 0x00, 0x00, 0x00, 0x95,
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xDE, 0xAD, 0xBE, 0xEF, 0xBA, 0xAD,
 0xF0, 0x0D,
 };
 uint8_t rx[ARRAY_SIZE(tx)] = {0, };
 if((write(fd, tx, ARRAY_SIZE(tx)))!=ARRAY_SIZE(tx))
 {
 printf("Write Failed.\n");
 }
 else
 {
 printf("\nTransmitted Buffer.\n");
 for(i=0; i < ARRAY_SIZE(tx); i++)
 {
 printf("0x%x,",tx[i]);
 if((!(i%10)) &&(i!=0))
 {
 printf("\n");
 }
 }
 }
 if((read(fd, rx, ARRAY_SIZE(tx)))!=ARRAY_SIZE(tx))
 {
 printf("\nRead Failed.\n");
 }
 else
 {
 printf("\nReceived Buffer.\n");
 for(i=0; i < ARRAY_SIZE(tx); i++)
 {
 printf("0x%x,",rx[i]);
 if((!(i%10)) &&(i!=0))
 {
 printf("\n");
 }
 }
 }

 return;
}

int main(int argc, char *argv[])
{
 int ret = 0;
 int fd;

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 73 of 155

 fd = open(device, O_RDWR);
 if (fd < 0)
 {
 printf("can't open device");
 return -1;
 }
 myTransfer(fd);

 close(fd);

 return ret;
}

4.4. GPIO
The GPIO driver creates a series of devices under the /dev/ directory. Each device is
named as at91sam9260_gpio.<pin>.
GPIO pins are numbered from 0 to 95. The first 32 pins refer to the PIO A controller, the
second 32 pins refer to the PIO B controller and the others refer to the PIO C controller.
For further information on GPIO pins (numbering, availability, etc.) please refer to [6]
(paragraph 4.17) and [1] (paragraph 3.3).
GPIO pins can be read and written thorough simple read/write operations.

The read operation returns the status and the level of the pin if it is configured as a
GPIO, otherwise it fails. The write operation can change the configuration and output
value. The configuration can be changed using:

 for output enable with pull up
 for output enable without pull up
 I input enabled with pull up
 i input enabled without pull up
 1 set the level up
 0 set the level low

To test a gpio you can use the shell, for example (gpio number 92):

echo O1 > /dev/at91sam9260_gpio.92

to raise up the signal.

The following subparagraphs show all the functions that can be used from C source
code to perform read/write operations onto GPIOs pins.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 74 of 155

4.4.1. Loading the GPIO module
Currently the GPIO is compiled as a module (at91sam9260_gpio.ko); it is automatically
loaded at startup using the script S02 placed in the folder /etc/init.d/. The user can
unload this module typing the following commands:
rmmod at91sam9260_gpio
rmmod atmel_gpio

To load the module the user shall type:
modprobe at91sam9260_gpio

4.4.2. open()
The open() function establishes the connection between a file and a file descriptor. The
file descriptor is used by other I/O functions to refer to the opened file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path

flags – is an int specifying file opening mode: is one of O_RDONLY, O_WRONLY or O_RDWR
 which request opening the file read-only, write-only or read/write, respectively

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1.

Example:
Open the GPIO device (for example number 92).

int fd; // file descriptor for GPIO /dev entries

if((fd = open(“/dev/at91sam9260_gpio.92”, O_RDWR)) < 0)
{
 /* Error Management Routine */
} else {
 /* Gpio Opened */
}

4.4.3. read()
The read() function reads nbyte bytes from the file associated with the open file
descriptor, fildes, and copies them in the buffer that is pointed to by buf.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 75 of 155

Header file:
unistd.h

Prototype:
ssize_t read(int fildes, void *buf, size_t nbyte)

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that read() attempts to read

Returns:
The number of bytes actually read if operation is completed successfully, otherwise it is
-1

Example:
Read sizeof(read_buff) bytes from the file associated with fd and stores them into
read_buff.

char read_buff[BUFF_LEN];

if(read(fd, read_buff, sizeof(read_buff)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Read */
}

4.4.4. write()
The write() function writes nbyte bytes from the buffer that are pointed by buf to the file
associated with the open file descriptor, fildes.

Header file:
unistd.h

Prototype:
ssize_t write(int fildes, const void *buf, size_t nbyte)

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that write() attempts to write

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 76 of 155

Returns:
The number of bytes actually written if operation is completed successfully
 (this number shall never be greater than nbyte), otherwise it is -1.

Example:
Write strlen(value_to_be_written) bytes from the buffer pointed by value_to_be_written
to the file associated with the open file descriptor, fd.

char value_to_be_written[] = “O1”;

if (write(fd, value_to_be_written, strlen(value_to_be_written))
< 0)
{
 /* Error Management Routine */
} else {
 /* Value Written */
}

4.4.5. close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate
means to make the file descriptor available for subsequent calls to open() or other
functions that allocate file descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes)

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1.

Example:
Close the GPIO device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 77 of 155

4.5. Ge863pro3_GPIO
Currently, the Linux kernel has a GPIO driver loaded by default as module. The loaded
GPIO module, described in the previous paragraph, does not support interrupt
management. When gpio interrupt handling is needed, the default GPIO module shall
be unloaded typing the following commands:

rmmod at91sam9260_gpio
rmmod atmel_gpio

and ge863pro3_gpio module shall be loaded as described in the chapter 4.5.2.

With the ge863pro3_gpio driver it is possible to configure each GPIO in three different
ways:

 No interrupt
 Continuous interrupt
 Interrupt notified by read function

By default the module starts with the “No interrupt” behavior. When enabling GPIO
interrupt it is possible to associate a different function (interrupt routine) to each GPIO.
Please note that if the user needs a specific function he shall modify the driver source
code by adding his personal routine. The user shall the recompile and reload the
module.
Enabling or disabling GPIO interrupt it changes the behavior of other system calls as
read and write.

4.5.1. Interrupt description
The interrupt management allows two different behaviors:

1. Continuous interrupt
2. Interrupt notified by read function

With “continuous interrupt” the driver manages each interrupt incrementing a counter.
When the user wants to get the counter value he shall use the GPIO_IOCTL_RET_VAL
ioctl (as explained in the following paragraphs 4.5.4).
With interrupt notified by read function, the user shall call the read function every time
he is waiting for an interrupt. When the interrupt occurs the thread waiting on the read
function is awaken.

4.5.2. Loading the GPIO module
As already stated the ge863pro3_gpio driver is released to customer under the shape of
a loadable module.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 78 of 155

To install the module, from the directory where the module is stored, the user shall
type:

insmod ge863pro3_gpio.ko

When loaded, the GPIO driver installs, under the /dev/ directory, 96 new devices,
named ge863pro3_gpio. <num>, num is a number from 0 to 95. The first 32 pins refer to
the A bank, the second 32 pins refer to the B bank and the others refer to the C bank.

Once installed the GPIO device can be used as a normal character device and can be
accessed by any application running in user space.

4.5.3. open()
The open() function shall establish the connection between a file and a file descriptor.
The file descriptor is used by other I/O functions to refer to the opened file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path
flags – is an int specifying file opening mode: is one of O_RDONLY, O_WRONLY or

O_RDWR which request opening the file read-only, write-only or read/write,
respectively

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1.

Example:
Open the /dev/ ge863pro3_gpio.66.

int fd; // file descriptor for the /dev/watchdog entry

if((fd = open("/dev/ge863pro3_gpio.66", O_ RDWR) < 0)
{
 /* Error Management Routine */
} else {
 /* GPIO Device Opened */
}

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 79 of 155

4.5.4. ioctl()
The ioctl() function manipulates the underlying device parameters. In particular, many
operating characteristics can be controlled with ioctl() requests.

Header file:
sys/ioctl.h
linux/gpio/ge863pro3_gpio_ioctl.h

Prototype:
int ioctl(int fildes, int request, ...)

Parameters:
fildes – file descriptor
request – device-dependent request code.

The following ioctls request codes can be used for SSC:

 GPIO_IOCTL_EN_IRQ_CONTINOUS enables the continuous interrupt behavior
 GPIO_IOCTL_EN_IRQ_BY_READ enables the interrupt managed by the read

system call
 GPIO_IOCTL_DIS_IRQ disables the interrupt
 GPIO_IOCTL_RET_VAL, if continuous interrupt is enabled, it allows the user to

read data managed by interrupt routine
 GPIO_IOCTL_WAIT_READ, if the interrupt is associated to the read system call,

sets the wait timeout of the read function.

The third argument is a void * and depends on the ioctl request code used: see the
examples below.

Returns:
0 if operation is completed successfully, otherwise it is -1.

Examples:

 GPIO_IOCTL_EN_IRQ_CONTINOUS
This ioctl starts the gpio interrupt routine after setting the specific gpio as input gpio
and enabling deglitch filter. The interrupt occurs both in raising and falling edge. Using
this configuration the interrupt routine updates a counter value every time an interrupt
occurs. To read the value of the counter the GPIO_IOCTL_RET_VAL ioctl shall be used.
Example:

if (ioctl(fd, GPIO_IOCTL_EN_IRQ_CONTINOUS, NULL))
{

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 80 of 155

 printf("Error GPIO_IOCTL_EN_IRQ_CONTINOUS\n");
 return -1;
}

 GPIO_IOCTL_EN_IRQ_BY_READ
This ioctl starts the gpio interrupt routine after setting the specific gpio as input gpio
and enabling deglitch filter. The interrupt occurs both in raising and falling edge. When
the user calls the read system call, the function wait until an interrupt occurs or the
timeout expires; the timeout is set using the GPIO_IOCTL_WAIT_READ, by default the
timeout is “wait forever”.
Example:

if (ioctl(fd, GPIO_IOCTL_EN_IRQ_BY_READ, NULL))
{
 printf("Error GPIO_IOCTL_EN_IRQ_BY_READ\n");
 return -1;
}

 GPIO_IOCTL_DIS_IRQ

By default the system has the interrupt disabled. To return to the default status the
following ioctl shall be used.
Example:

 if (ioctl(fd, GPIO_IOCTL_DIS_IRQ, NULL))
 {
 printf("disableGpioInterrupt - Error\n");
 return -1;
 }

 GPIO_IOCTL_RET_VAL

This ioctl is used to retrieve the interrupt counter value when the driver is configured in
“continuous interrupt” mode. In all the other cases the ioct returns an error code.
Example:

int val;

if (ioctl(fd, GPIO_IOCTL_RET_VAL, &val))
{
 printf("GPIO_IOCTL_RET_VAL Error\n");
 return -1;
}

 GPIO_IOCTL_WAIT_READ

This ioctl is used to configure the wait timeout associated to the read function when the
driver is configured in “interrupt notified by read function” mode. In all the other cases
the ioct returns an error code.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 81 of 155

Example:

long time;

time = 1000; /*ms*/
if (ioctl(fd, GPIO_IOCTL_WAIT_READ, time))
{
 printf("Error GPIO_IOCTL_WAIT_READ\n");
 return -1;
 }

4.5.5. read()
The read() function reads nbyte bytes from the file associated with the open file
descriptor, fildes, and copies them in the buffer that is pointed to by buf.
In this particular case the read system call has two different behaviors depending on
the driver configuration. When the driver is configured either in “No Interrupts” or in
“Continuous interrupt” mode the read function returns the configuration of GPIO: Input.
Output, zero, one, pull up, pull down. If the pin is configured as peripheral the read
function returns -1.
Characters returned into the buffer by the read function:

 ‘O’ = output with pull up
 ‘o’ = output without pull up
 ‘I’ = input with pull up
 ‘i’ = input without pull up
 ‘1’ = set the level up
 ‘0’ = set the level down

Example:
‘O1’ = GPIO configured as output with pull up and level up

When the driver is configured in “interrupt notified by the read function” mode, the read
function returns the interrupt counter value, but if the timeout expires it will return an
error code.

Header file:
unistd.h

Prototype:
ssize_t read(int fildes, void *buf, size_t nbyte);

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that read() attempts to read

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 82 of 155

Returns:
The number of bytes actually read if operation is completed successfully, otherwise it is
-1.

Example:
Read sizeof(val) bytes from the file associated with fd and stores them in val.

int val;

if(read(fd, &val, sizeof(val)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Read */
}

4.5.6. write()
The write() function writes nbyte bytes from the buffer that are pointed by buf to the file
associated with the open file descriptor, fildes. In this particular case the use of this
system call is allowed only if the driver is configured in “No interrupt” mode. The user
can configure the GPIO as input/output, the GPIO value one (up) or zero (down) and pull
up or not pull up.
Characters to put into the buffer to configure the GPIO:

 ‘O’ = output with pull up
 ‘o’ = output without pull up
 ‘I’ = input with pull up
 ‘i’ = input without pull up
 ‘1’ = set the level up
 ‘0’ = set the level down

Header file:
unistd.h

Prototype:
ssize_t write(int fildes, const void *buf, size_t nbyte);

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that write() attempts to write

Returns:
The number of bytes actually written if operation is completed successfully, (this
number shall never be greater than nbyte), otherwise it is -1

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 83 of 155

Example:
Write strlen(value_to_be_written) bytes from the buffer pointed by value_to_be_written
to the file associated with the open file descriptor, fd.

char value_to_be_written[] = “O1”; /*output – one – pullup*/

if (write(fd, value_to_be_written, strlen(value_to_be_written))
< 0)
{
 /* Error Management Routine */
} else {
 /* Value Written */
}

4.5.7. Interrupt routine customization
Currently the interrupt routine code is the following:

static irqreturn_t ge863pro3_handler(int irq, void *dev_id)
{
 int retval = IRQ_NONE;
 struct ge863pro3_gpio_irq *irq_gpio=(struct ge863pro3_gpio_irq*)
dev_id;

 spin_lock(&ge863pro3_gpio_spinlock);
 if(irq_gpio->is_irq_enable == GPIO_EN_IRQ_CONTINOUS)
 {
 irq_gpio->counter+=1;
 retval = IRQ_HANDLED;
 }
 else if(irq_gpio->is_irq_enable == GPIO_EN_IRQ_BY_READ)
 {
 irq_gpio->counter+=1;
 complete(&irq_gpio->irq_completion);
 retval = IRQ_HANDLED;
 }
 spin_unlock(&ge863pro3_gpio_spinlock);

 return retval;
}

When the user needs a specific behavior of the interrupt routine, he shall change the
above code. He shall pay attention to the two “if-else” scopes. The first is executed
when the driver is set in “Continuous interrupt” mode, the second one is executed when
the driver is configured in “Interrupt notified by read function” mode.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 84 of 155

In the specific case of “Interrupt notified by read function” mode, the user modification
shall keep the code line complete(&irq_gpio->irq_completion)at the end of the
interrupt routine.
This function awakes the read system call previously suspended.
If the user needs to manage a most complex data structure, in our case is a simple
integer counter, he shall change the data structure ge863pro3_gpio_irq.

4.5.8. close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate
means to make the file descriptor available for subsequent calls to open() or other
functions that allocate file descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes);

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1

Example:
Close the GPIO device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.5.9. A Test Program
Below it is reported a simple piece of code that first opens the device and then reads
some data.

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 85 of 155

#include <unistd.h>

#include <linux/gpio/ge863pro3_gpio_ioctl.h>

int main(int argc, char *argv[])
{
 int i;
 int val;
 int fd;
 long time;

 fd = open("/dev/ge863pro3_gpio.66",O_RDWR);
 if(fd == NULL)
 {
 printf("ERROR OPEN\n");
 return -1;
 }

 if (ioctl(fd, GPIO_IOCTL_EN_IRQ_BY_READ, NULL))
 {
 printf("Error GPIO_IOCTL_EN_IRQ_BY_READ\n");
 return -1;
 }

 time = 10000; /*10 sec of timeout*/

 if (ioctl(fd, GPIO_IOCTL_WAIT_READ, time))
 {
 printf("Error GPIO_IOCTL_WAIT_READ\n");
 return -1;
 }

 i = 0;

 while(i<10)
 {
 if(read(fd,&val, sizeof(int))<0)
 {
 printf("Error in read\n");
 }
 else
 {
 printf("Read : %d\n", val);
 }

 i++;
 }

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 86 of 155

 close(fd);
 return 0;
}

4.6. ADC
The GE863-PRO3 is provided with a 10-bit Analog-to-Digital Converter (ADC) based on a
Successive Approximation Register (SAR). It makes possible the conversion of up to 4
analog lines, because it integrates a 4-to-1 analog multiplexer.

The user can configure many ADC features, for example: 8-bit or 10-bit resolution
mode; Normal or Sleep Mode to save power consumption, Sample and Hold Time,
Startup Time, and other explained later.

In this technical note we’ll see how to use the Telit ADC Driver and the options it
provides.

4.6.1. Loading the ADC Module

To use the ADC device through the /dev interface of the Linux Operating System, you
have to load the adc_driver.ko module.

To do this, select the folder containing that file and type
 insmod ./adc_driver.ko

After the loading, in the /dev folder will be created one device called adc. The ADC
default settings after the loading are: 10-bit resolution mode, normal mode,
PRESCAL=0x9, STARTUP=0x7, and SHTIM=0x3.

4.6.2. open()
The open() function shall establish the connection between a file and a file descriptor.
The file descriptor is used by other I/O functions to refer to that file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 87 of 155

flags – is an int specifying file opening mode: is one of O_RDONLY, O_WRONLY or
O_RDWR which request opening the file read-only, write-only or read/write,
respectively

Returns:
The new file descriptor fildes if successfull, -1 otherwise

Example:
Open the /dev/adc.

int fd; // file descriptor for the /dev/adc entry

if((fd = open("/dev/adc", O_RDONLY) < 0)
{
 /* Error Management Routine */
} else {
 /* ADC Device Opened */
}

4.6.3. ioctl()
The ioctl() function manipulates the underlying device parameters of special files. In
particular, many operating characteristics of character special files may be controlled
with ioctl() requests.

Header file:
sys/ioctl.h
linux/adc/adc.h

Prototype:
int ioctl(int fildes, int request, ...)

Parameters:
fildes – file descriptor

request – device-dependent request code.

 The following ioctls request codes can be used for ADC:

 ADC_SET_RESOLUTION, ADC_GET_RESOLUTION: to set the ADC resolution
mode

 ADC_SET_TYPE, ADC_GET_TYPE: to set/get the interrupt or the trigger mode
 ADC_SET_MAX_WAIT, ADC_GET_MAX_WAIT: to set/get the maximum wait for

an interrupt
 ADC_ECHLS: to enable the chosen ADC lines
 ADC_DCHLS: to disable the chosen ADC lines

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 88 of 155

 ADC_SCHLS: to know the currently enabled ADC lines
 ADC_SET_MODE, ADC_GET_MODE: to set Sleep/Normal mode and get the

status
 ADC_SET_STARTUP, ADC_GET_STARTUP: to set/get the startup time
 ADC_SET_SHTIM, ADC_GET_SHTIM: to set/get the Sample and Hold time
 ADC_SET_PRESCAL, ADC_GET_PRESCAL: to set/get the prescaler value.
 ADC_RESET: to reset the ADC

The third argument is a void * and depends on the ioctl request code used: see the
examples below.

Returns:
0 if successful, -1 otherwise

Examples:

 ADC_SET_RESOLUTION, ADC_GET_RESOLUTION

The ADC_SET_RESOLUTION command sets the resolution of the digital result of the
analog to digital conversion. The minimum digital value available after the conversion is
always 0, and corresponds to an applied analog voltage of 0V. The maximum digital
value available is 255 if you set the 8-bit resolution or 1023 if you set the 10-bit
resolution. The maximum value is obtained with an applied analog voltage of 3.1V.
If you want to use the 8-bit mode, type:

if (ioctl(fd, ADC_SET_RESOLUTION, ADC_8_BIT) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

The default value for ADC_SET_RESOLUTION is the 10-bit mode, so if you want to use
this mode you don’t need to do anything. But, if you previously set the 8-bit mode, you
may need to set the 10-bit mode. To do this, type:

if (ioctl(fd, ADC_SET_RESOLUTION, ADC_10_BIT) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

The ADC_GET_RESOLUTION command returns the current ADC resolution mode in the
status variable. An example of use is:

unsigned long status;

if (ioctl(fd, ADC_GET_RESOLUTION, &status) < 0) {
fprintf(stderr, "Error during IOCTL\n");

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 89 of 155

}
else
{

if(status== ADC_10_BIT)
printf("Current status: 10 bit resolution\n");
if(status== ADC_8_BIT)
printf("Current status: 8 bit resolution\n");

}

 ADC_SET_TYPE, ADC_GET_TYPE

The ADC_SET_TYPE command allows the user to select the functionality he needs
between the interrupt one and the trigger one. The interrupt functionality is useful if
the user wants to perform only one analog to digital conversion when he makes a read
call. The trigger functionality, instead, performs periodic and continuous conversions;
so the user, with a read call, can receive the last converted values. By default, the
driver is in interrupt mode.
IMPORTANT: the ioctl with the ADC_SET_TYPE command must always be called
BEFORE the ioctl with the ADC_SET_CLOCK command.

If you want to set the interrupt mode, type:

if (ioctl(fd, ADC_SET_TYPE, ADC_INTERRUPT) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

For the trigger mode, you need to use the external Timer Counter that will perform
periodic trigger. So you must also load the Timer Counter driver and do its settings (see
the Timer Counter chapter in this guide). Each trigger will start a new conversion. You
can choose one among three Timer Counter devices (through the arguments
ADC_TRIGGER_TC0, ADC_TRIGGER_TC1 and ADC_TRIGGER_TC2). For example, to set
the trigger mode and use the Timer Counter 1 to generate the periodic triggers, type:

if (ioctl(fd, ADC_SET_TYPE, ADC_TRIGGER_TC1) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

The ADC_GET_TYPE command returns the current ADC mode in the status variable.
An example of use is:

unsigned long status;

if (ioctl(fd, ADC_GET_TYPE, &status) < 0) {
fprintf(stderr, "Error during IOCTL\n");

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 90 of 155

}
else
{

if(status== ADC_INTERRUPT)
printf("ADC is in Interrupt Mode\n");
else
printf("ADC is in Trigger Mode \n");

}

 ADC_SET_MAX_WAIT, ADC_GET_MAX_WAIT

The ADC_SET_MAX_WAIT command allows the user to set the maximum wait for an
interrupt in milliseconds, when the ADC is in Interrupt Mode. In fact, when a read call is
performed in Interrupt Mode, the driver starts the analog to digital conversion and then
waits for an interrupt from the ADC that indicates the end of the conversion. By default,
the wait value is ADC_MAX_TIMEOUT that performs a “wait for ever”. To set a different
value, use an ioctl call like the following, where we set a maximum wait time of five
seconds:

if (ioctl(fd, ADC_SET_MAX_WAIT, 5000) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

The ADC_GET_MAX_WAIT command returns the current maximum wait value. An
example of use is:

unsigned long status;

if (ioctl(fd, ADC_GET_MAX_WAIT, &status) < 0) {
fprintf(stderr, "Error during IOCTL\n");

}
else
{

if(status == ADC_MAX_TIMEOUT)
printf("The driver will wait for ever if it doesn�t receive

an interrupt\n");
else
printf("The max wait value is %d \n", status);

}

 ADC_ECHLS

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 91 of 155

The ADC_ECHLS command allows the user to enable only the ADC lines he needs. You
can choose among enabling ADC_CH0, ADC_CH1, ADC_CH2 or ADC_CH3. For example,
to enable the line one (ADC_CH1) and the line three (ADC_CH3), type:

if (ioctl(fd, ADC_ECHLS, ADC_CH1 | ADC_CH3) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

 ADC_DCHLS

The ADC_DCHLS command allows the user to disable only the ADC lines he needs. By
default, all the lines are disabled. For example, if you have previously enabled the line 2,
you can disable it typing:

if (ioctl(fd, ADC_DCHLS, ADC_CH2) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

Obviously, if you try to disable a line already disabled you won’t have any effect.

 ADC_SCHLS

The ADC_SCHLS command returns in the status variable the currently enabled ADC
lines. To see if the channel x is enabled, you have to AND the status variable with the
ADC_CHx macro. An example of use is:

unsigned long status;
if (ioctl(fd, ADC_SCHLS, &status) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}
else
{

if(status & ADC_CH2)
printf("The channel 2 is enabled\n");
else
printf("The channel 2 is disabled\n");

}

 ADC_SET_MODE, ADC_GET_MODE

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 92 of 155

The ADC_SET_MODE command allows the user to set the Sleep Mode in the ADC. This
mode is useful to maximize power saving. By default, the ADC is in Normal Mode. To
enable the Sleep Mode, type:
if (ioctl(fd, ADC_SET_MODE, SLEEP) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

To disable the Sleep Mode, type

if (ioctl(fd, ADC_SET_MODE, NORMAL) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

To know the current status, type

unsigned long status;
if (ioctl(fd, ADC_GET_MODE, &status) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}
else
{

if(status == NORMAL)
printf("Current status: Normal mode\n");
if(status == SLEEP)
printf("Current status: Sleep mode\n");

}

 ADC_SET_STARTUP, ADC_GET_STARTUP

The ADC_SET_STARTUP command allows the user to set the value of the startup time
of the ADC. The startup time is the time between the reset of the ADC and the moment
it is enabled to be used. Its range is between 0x0 and 0x1F, but you must consider that
it’s necessary to set the STARTUP value at least to 0x4 to obtain a correct conversion;
lower values generate conversion errors. This is an example of setting the startup
value:

if (ioctl(fd, ADC_SET_STARTUP, 0x7) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

To know the current status, type

unsigned long status;

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 93 of 155

if (ioctl(fd, ADC_GET_STARTUP, &status) < 0) {
fprintf(stderr, "Error during IOCTL\n");

}
else
{

printf("The startup value is %X\n", status);
}

 ADC_SET_SHTIM, ADC_GET_SHTIM

The ADC_SET_SHTIM command allows the user to set the value of the Sample and
Hold Time of the ADC. The Sample and Hold Time is the time needed to receive the
signal clock, receive the analog signal to convert, hold this signal and give it to the
conversion process. Its range is between 0x0 and 0xF, but you must consider that it’s
necessary to set the SHTIM value at least to 0x2 to obtain a correct conversion; lower
values generate conversion errors. This is an example of setting the Sample and Hold
Time value:
if (ioctl(fd, ADC_SET_SHTIM, 0x3) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

To know the current status, type

unsigned long status;
if (ioctl(fd, ADC_GET_SHTIM, &status) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}
else
{

printf("The Sample and Hold Time value is %X\n", status);
}

 ADC_SET_PRESCAL, ADC_GET_PRESCAL

The ADC_SET_PRESCAL command allows the user to set the prescal value of the ADC.
This value is a prescaler that modifies the frequency of the signal clock to adapt the
master clock to the frequency needed by the ADC conversion process. The range of the
prescal value is between 0x0 and 0x3F, but you must consider that it’s necessary to set
the value at least to 0x3 to obtain a correct conversion; lower values generate
conversion errors. This is an example of setting this value:
if (ioctl(fd, ADC_SET_PRESCAL, 0x9) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 94 of 155

To know the current status, type

unsigned long status;
if (ioctl(fd, ADC_GET_PRESCAL, &status) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}
else
{

printf("The prescal value is %X\n", status);
}

 ADC_RESET

The ADC_RESET command allows the user to reset the ADC. You can choose to
completely reset the ADC using the 0 argument, or perform a reset plus a default
initialization (PRESCAL=0x9, STARTUP=0x7, SHTIM=0x3) using the 1 argument. After a
reset the ADC will be automatically set in INTERRUPT mode.
Examples:

if (ioctl(fd, ADC_RESET, 0) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}
if (ioctl(fd, ADC_RESET, 1) < 0) {

fprintf(stderr, "Error during IOCTL\n");
}

4.6.4. read()
The read() function shall attempt to read nbyte bytes from the file associated with the
open file descriptor, fildes, into the buffer pointed to by buf. . It will return in the buf
argument the four digital values, one for each line, obtained after the conversion. Each
value use 2 bytes of buf, so the dimension of buf must be set to RESULT_SIZE, that is
equal to 8.If some line is disabled the correspondent value in buf will be equal to -1.

Header file:
unistd.h

Prototype:
ssize_t read(int fildes, void *buf, size_t nbyte);

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 95 of 155

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that read() attempts to read. It must be set to RESULT_SIZE.

Returns:
The number of bytes actually read if successfull, -1 otherwise.

Example:

char buf[RESULT_SIZE];

if(read(fd,buf,RESULT_SIZE)<0){

fprintf(stderr, "Error during read\n");
}

To convert the eight values stored in buf into four short int values, you can use one
of the facilities of the adc.h header file, as you can see in the following examples:

Example 1:
struct result *r;
r=(struct result*)buf;
printf("The values are chn0=%d,chn1=%d,chn2=%d,chn3=%d\n",r-
>chn0,r->chn1,r->chn2,r->chn3);

Example 2:
printf("The values are chn0=%d, chn1=%d, chn2=%d, chn3=%d\n",
CONVERT(buf,0), CONVERT(buf,1), CONVERT(buf,2), CONVERT(buf,3));

4.6.5. close()
The close() function shall deallocate the file descriptor indicated by fildes. To deallocate
means to make the file descriptor available for return by subsequent calls to open() or
other functions that allocate file descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes);

Parameters:
fildes – file descriptor

Returns:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 96 of 155

0 if successful, -1 otherwise

Example:
Close the ADC device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.7. SSC
The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication
link with external devices.
It supports many serial synchronous communication protocols generally used in audio
and telecom applications such as I2S, Short Frame Sync, Long Frame Sync, etc. The
SSC is a six wire serial link used in audio application.
The SSC contains an independent receiver and transmitter and a common clock divider.
Each of the receiver and transmitter interface use three signals: the TD/RD signal for
data, the TK/RK signal for the clock and the TF/RF signal for the Frame Sync.
The transfers can be programmed to start automatically or on different events detected
on the Frame Sync signal.
The SSC’s high-level of programmability and its two dedicated PDC channels of up to
32 bits permit a continuous high bit rate data transfer without processor intervention.

4.7.1. Loading the SSC module
The SSC driver is released to customer under the shape of a loadable module.

To install the module, from the directory where the module is stored, the user shall
type:

modprobe atmel-ssc
insmod ge863pro3_ssc.ko

When loaded, the SSC driver installs, under the /dev/ directory, a new device, named
ssc_ge863pro3.

Once installed the SSC device can be used as a normal character device and can be
accessed by any application running in user space.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 97 of 155

4.7.2. open()
The open() function shall establish the connection between a file and a file descriptor.
The file descriptor is used by other I/O functions to refer to the opened file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path
flags – is an int specifying file opening mode: is one of O_RDONLY, O_WRONLY or

O_RDWR which request opening the file read-only, write-only or read/write,
respectively

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1.

Example:
Open the /dev/ssc_ge863pro3.

int fd; // file descriptor for the /dev/ssc_ge863pro3 entry

if((fd = open("/dev/ssc_ge863pro3", O_ RDWR) < 0)
{
 /* Error Management Routine */
} else {
 /* SSC Device Opened */
}

4.7.3. ioctl()
The ioctl() function manipulates the underlying device parameters. In particular, many
operating characteristics can be controlled with ioctl() requests.

Header file:
sys/ioctl.h
linux/ssc/ge863pro3_ssc_ioctl.h

Prototype:
int ioctl(int fildes, int request, ...)

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 98 of 155

Parameters:
fildes – file descriptor
request – device-dependent request code.

 The following ioctls request codes can be used for SSC:
 SSC_IOCTL_CMR_SET and SSC_IOCTL_CMR_GET to set/get the Clock Mode

Register
 SSC_IOCTL_RCMR_SET and SSC_IOCTL_RCMR_GET to set/get the Receive

Clock Mode Register
 SSC_IOCTL_RFMR_SET and SSC_IOCTL_RFMR_GET to set/get the Receive

Frame Mode Register
 SSC_IOCTL_TCMR_SET and SSC_IOCTL_TCMR_GET to set/get the Transmit

Clock Mode Register
 SSC_IOCTL_TFMR_SET and SSC_IOCTL_TFMR_GET to set/get the Transmit

Frame Mode Register
 SSC_IOCTL_CR_SET to set the Control Register

The third argument is a void * and depends on the ioctl request code used: see the
examples below.

Returns:
0 if operation is completed successfully, otherwise it is -1.

Examples:

 SSC_IOCTL_CMR_SET and SSC_IOCTL_CMR_GET

The CMR register is used to configure the Master Clock divider. The Master Clock
divider is determined by the 12-bit field DIV counter and comparator (so its maximal
value is 4095) in the Clock Mode Register SSC_CMR, allowing a Master Clock division
by up to 8190. The Divided Clock is provided to both the Receiver and Transmitter.
Pass a pointer to a unsigned int which will return or assign the CMR configuration.
Example:

div = (CLK_RATE/(44100*2*16))/2; ;/* Beware! this is just an
example.
Check your device before setting these fields*/
if(ioctl(fd, SSC_IOCTL_CMR_SET, &div))
{
 printf("ERROR IOCTL CMR\n");
}

 SSC_IOCTL_RCMR_SET and SSC_IOCTL_RCMR_GET

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 99 of 155

The receiver clock is generated from the transmitter clock or the divider clock or an
external clock scanned on the RK I/O pad. The Receive Clock is selected by the CKS
field in SSC_RCMR (Receive Clock Mode Register).
Pass a pointer to an unsigned int which will return or assign the RCMR configuration.
Example:

rcmr = 0x00010121;
if(ioctl(fd, SSC_IOCTL_RCMR_SET, &rcmr))
{
 printf("ERROR IOCTL RCMR\n");
}

 SSC_IOCTL_RFMR_SET, SSC_IOCTL_RFMR_GET, SSC_IOCTL_TFMR_SET and

SSC_IOCTL_TFMR_GET

The Transmitter and Receiver Frame Sync pins, TF and RF, can be programmed to
generate different kinds of frame synchronization signals. The Frame Sync Output
Selection (FSOS) field in the Receive Frame Mode Register (SSC_RFMR) and in the
Transmit Frame Mode Register (SSC_TFMR) are used to select the required waveform.
Programmable low or high levels during data transfer are supported.
Programmable high levels before the start of data transfers or toggling are also
supported.
Pass a pointer to an unsigned int which will return or assign the RFMR/TFMR
configuration.
Example:

tfmr = 0x001F018F;
rfmr = 0x0000018F;

if(ioctl(fd, SSC_IOCTL_TFMR_SET, &tfmr))
{
 printf("ERROR IOCTL TFMR\n");
}

if(ioctl(fd, SSC_IOCTL_RFMR_SET, &rfmr))
{
 printf("ERROR IOCTL RFMR\n");
}

 SSC_IOCTL_TCMR_SET and SSC_IOCTL_TCMR_GET

The transmitter clock is generated from the receiver clock or the divider clock or an
external clock scanned on the TK I/O pad. The transmitter clock is selected by the CKS
field in SSC_TCMR (Transmit Clock Mode Register).
Pass a pointer to a unsigned int which will return or assign the TCMR configuration.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 100 of 155

Example:

tcmr = 0x0F010404;
if(ioctl(fd, SSC_IOCTL_TCMR_SET, &tcmr))
{
 printf("ERROR IOCTL RCMR\n");
}

 SSC_IOCTL_CR_SET

The SSC_CR is used to enable/disable transmit and receive data. The signal clock
starts only after the enable of transmit or receive.
Pass a pointer to an unsigned int which will assign the CR configuration.
Example:

cr = (1<<8)|1;/*enable RX and TX*/
if(ioctl(fd, SSC_IOCTL_CR_SET, &cr))
{
 printf("ERROR IOCTL CR\n");
}

4.7.4. read()
The read() function reads nbyte bytes from the file associated with the open file
descriptor, fildes, and copies them in the buffer that is pointed to by buf.

Header file:
unistd.h

Prototype:
ssize_t read(int fildes, void *buf, size_t nbyte);

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that read() attempts to read

Returns:
The number of bytes actually read if operation is completed successfully, otherwise it is
-1.

Example:
Read sizeof(read_buff) bytes from the file associated with fd and stores them in
read_buff.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 101 of 155

char read_buff[BUFF_LEN];

if(read(fd, read_buff, sizeof(read_buff)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Read */
}

4.7.5. write()
The write() function writes nbyte bytes from the buffer that are pointed by buf to the file
associated with the open file descriptor, fildes.

Header file:
unistd.h

Prototype:
ssize_t write(int fildes, const void *buf, size_t nbyte);

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that write() attempts to write

Returns:
The number of bytes actually written if operation is completed successfully, (this
number shall never be greater than nbyte), otherwise it is -1

Example:
Write strlen(value_to_be_written) bytes from the buffer pointed by value_to_be_written
to the file associated with the open file descriptor, fd.

char value_to_be_written[] = “dummy_write”;

if (write(fd, value_to_be_written, strlen(value_to_be_written))
< 0)
{
 /* Error Management Routine */
} else {
 /* Value Written */
}

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 102 of 155

4.7.6. close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate
means to make the file descriptor available for subsequent calls to open() or other
functions that allocate file descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes);

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1

Example:
Close the SSC device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.7.7. A Test Program
Below it is reported a simple piece of code that first opens the device and then writes
some data.

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>

#include <linux/ssc/ge863pro3_ssc_ioctl.h>

int main(int argc, char *argv[])
{

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 103 of 155

 int i;
 int res;
 int fd;
 unsigned int tcmr, div, tfmr, cr,rcmr,rfmr;
 unsigned int retW;
 char txt[20000];

 fd = open("/dev/ssc_ge863pro3",O_RDWR);
 if(fd == NULL)
 {
 printf("ERROR OPEN\n");
 return -1;
 }

 tcmr = 0x0F010404;
 tfmr = 0x001F018F;
 div = (101000000/(44100*2*16))/2;
 cr = (1<<8)|1;/*enable RX and TX*/
 rcmr = 0x00010121;
 rfmr = 0x0000018F; /* Loop = 0; Datnb = 1*/

 if(ioctl(fd, SSC_IOCTL_TCMR_SET, &tcmr))
 {
 printf("ERROR IOCTL TCMR\n");
 return -1;
 }

 if(ioctl(fd, SSC_IOCTL_TFMR_SET, &tfmr))
 {
 printf("ERROR IOCTL TFMR\n");
 return -1;
 }

 if(ioctl(fd, SSC_IOCTL_RCMR_SET, &rcmr))
 {
 printf("ERROR IOCTL RCMR\n");
 return -1;
 }

 if(ioctl(fd, SSC_IOCTL_RFMR_SET, &rfmr))
 {
 printf("ERROR IOCTL RFMR\n");
 return -1;
 }

 if(ioctl(fd, SSC_IOCTL_CMR_SET, &div))
 {
 printf("ERROR IOCTL CMR\n");

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 104 of 155

 return -1;
 }

 if(ioctl(fd, SSC_IOCTL_CR_SET, &cr))
 {
 printf("ERROR IOCTL CR\n");
 return -1;
 }

 memset(txt,�A�, 20000);

 retW = write(fd,txt,20000);

 close(fd);

 return 0;
}

4.8. Watchdog
A Watchdog Timer (WDT) is a hardware circuit that can reset the computer system in
case of a software fault.
Usually a userspace daemon will notify the kernel watchdog driver via the
/dev/watchdog special device file that the userspace is still alive, at regular intervals.
When such a notification occurs, the driver will usually tell the hardware watchdog that
everything is in order, and that the watchdog should wait before resetting the system. If
userspace fails (RAM error, kernel bug, whatever), the notifications cease to occur, and
the hardware watchdog will reset the system (causing a reboot) after the timeout
expires.

Userspace can interact with the kernel watchdog driver through the functions shown in
the paragraphs below.

4.8.1. open()
The open() function establishes the connection between a file and a file descriptor. The
file descriptor is used by other I/O functions to refer to the opened file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 105 of 155

pathname – file name with its own path
flags – an int specifying file opening mode: that can be O_RDONLY, O_WRONLY or

O_RDWR which request opening the file read-only, write-only or read/write,
respectively

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1
Example:
Open the /dev/watchdog.

int fd; // file descriptor for the /dev/watchdog entry

if((fd = open("/dev/watchdog", O_WRONLY) < 0)
{
 /* Error Management Routine */
} else {
 /* Watchdog Device Opened */
}

4.8.2. ioctl()
The ioctl() function manipulates the underlying device parameters. In particular, many
operating characteristics can be controlled with ioctl() requests.

Header file:
sys/ioctl.h
linux/watchdog.h

Prototype:
int ioctl(int fildes, int request, ...)

Parameters:
fildes – file descriptor
request – device-dependent request code.

 The following ioctls request codes can be used for watchdog device:

 WDIOC_KEEPALIVE: to notify the watchdog that userspace is still alive
 WDIOC_SETTIMEOUT: to set a timeout
 WDIOC_SETOPTIONS: to enable or disable the watchdog
 WDIOC_GETTIMEOUT: to query the timeout

The third argument is a void * and depends on the ioctl request code used: see the
examples below.

Returns:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 106 of 155

0 if operation is completed successfully, otherwise it is -1

Examples:

 WDIOC_KEEPALIVE

The AT91Sam9260 watchdog driver supports the WDIOC_KEEPALIVE ioctl. It notifies
the watchdog that userspace is still alive. In this case the third argument in the ioctl is
ignored. This function call resets the timer and leaves the system alive (is used to avoid
reset when the watchdog is active). Example:

fd = open("/dev/watchdog", O_WRONLY);
int dummy;
for(;;){
 ioctl(fd, WDIOC_KEEPALIVE, &dummy);
 sleep(1)
}

 WDIOC_SETTIMEOUT

Setting Timeout is performed by the SETTIMEOUT ioctl. The third argument is an
integer that represents the timeout in seconds (max timeout is 16 seconds in
at91sam9260 architecture). The driver returns the real timeout used in the same
variable, and this timeout can be different from the one that has been set due to
limitation of the hardware.
The watchdog timeout can be written only once (at91sam9260 only permits one
program operation).
Example:

int timeout=15;
ioctl(fd, WDIOC_SETTIMEOUT, &timeout);

Notice: If the watchdog start is enabled the user must set the timeout otherwise it will
use the default value.

 WDIOC_SETOPTIONS

It enables or disables the watchdog. The third argument is an integer indicating the
option to be set.

Example to disable the watchdog:

int options = WDIOS_DISABLECARD;
ioctl(fd, WDIOC_SETOPTIONS, &options);

Example to enable the watchdog:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 107 of 155

int options = WDIOS_ENABLECARD;
ioctl(fd, WDIOC_SETOPTIONS, &options);

 WDIOC_GETTIMEOUT

It is possible to query the timeout using the WDIOC_GETTIMEOUT ioctl. The third
argument is an integer representing the timeout in seconds.
Example:

ioctl(fd, WDIOC_GETTIMEOUT, &timeout);
printf("The timeout is %d seconds\n", timeout);

4.8.3. close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate
means to make the file descriptor available for subsequent calls to open() or other
functions that allocate file descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes)

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1

Example:
Close the watchdog device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 108 of 155

4.9. Power Management
The GE863-PRO³ makes available two power management modes:

 standby
 suspend to RAM

The standby mode puts RAM in self refreshing mode. This mode can be enabled by
typing:

echo standby > /sys/power/state

The suspend to RAM mode puts RAM in self refreshing mode and cpu in slow-clock
mode. It can be enabled as follows:

echo mem > /sys/power/state

In both modes GE863-PRO³ can be awakened by an interrupt from an awakeable source
(e.g., by inserting a SD card or generating an event on /dev/ttyS1).

Each device listed in /sys/devices/platform/ has a file named “wakeup” in its
subdirectory power/. If a device can issue wakeup events, a read from its wakeup file
gives the string “enabled\n” or “disabled\n”, depending on whether its wakeup feature
is enabled or not; if needed, the user can change a device’s behaviour by writing on its
wakeup file the string “enabled” or “disabled”. If a device cannot issue wakeup events,
a read from its wakeup file gives the string “\n”, and it is not possible to write on the
file.
In order for a device to be able to wake up the system, it is necessary to have a driver
which controls the device and supports the suspend and resume mechanisms; so, for
example, the Ethernet controller (whose directory is
/sys/devices/platform/macb/) is not able to wake up the system unless its
driver is loaded (see section 4.12). Also, some devices must be in use (for example,
there must be a process which has their device file opened) to be able to wake up the
system.
Some devices cannot wake up the system from suspend to RAM mode, even if their
wakeup file shows that their wakeup feature is enabled: this is due to the fact that
those devices in order to work properly need a high speed clock, and during suspend to
RAM the high speed clocks are turned off. For example the serial ports can not receive
characters if their clock is not correctly set, and thus it is not possible to wake up the
system from suspend to RAM mode by sending characters to them; as an exception, the
serial port /dev/ttyS0 (whose directory is
/sys/devices/platform/atmel_usart.0/) can wake up the system from any
power save mode by sending characters to it, but in case of suspend to RAM some
characters sent while the system is being woken up might get lost.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 109 of 155

Power management can also be performed from source code as shown below. The
functionalities provided by the Linux kernel Real Time Clock (RTC) (see paragraph 4.10)
can be used to manage system awakenings.

4.9.1. open()
The open() function establishes the connection between a file and a file descriptor. The
file descriptor is used by other I/O functions to refer to the opened file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path
flags – an int specifying file opening mode: that can be O_RDONLY, O_WRONLY or

O_RDWR which request opening the file read-only, write-only or read/write,
respectively

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1

Example:
Open the /sys/power/state file.

int fd; // file descriptor for the /sys/power/state entry

fd = open("/sys/power/state", O_RDWR);
if (fd == -1)
{
 /* Error Management Routine */
}

4.9.2. write()
The write() function writes nbyte bytes from the buffer that are pointed by buf to the file
associated with the open file descriptor, fildes.

Header file:
unistd.h

Prototype:
ssize_t write(int fildes, const void *buf, size_t nbyte)

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 110 of 155

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that write() attempts to write

Returns:
The number of bytes actually written if operation is completed successfully
 (this number shall never be greater than nbyte), otherwise it is -1.

Example:
Write strlen(value_to_be_written) bytes from the buffer pointed by value_to_be_written
to the file associated with the open file descriptor, fd.

char mode[] = “standby”; /* it can also be “mem” */

if (write(fd, mode, strlen(mode)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Written */
}

4.9.3. close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate
means to make the file descriptor available for subsequent calls to open() or other
functions that allocate file descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes)

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1

Example:
Close the watchdog device.

if(close(fd) < 0)

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 111 of 155

{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.10. Real Time Clock (RTC)
Most computers have a built-in hardware clock, usually called the real-time clock. This
clock is normally battery powered so that it keeps the time even while the computer is
switched off. It represents the current time as year, month, day of month, hour, minute,
and second. The RTC should not be confused with the system time which is an
independent, interrupt-driven software clock maintained by the kernel.
Below are described all the functions to be used to manage RTC and an example on
how to perform power management operations.

4.10.1. open()
The open() function establishes the connection between a file and a file descriptor. The
file descriptor is used by other I/O functions to refer to the opened file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path

flags – an int specifying file opening mode: that can be O_RDONLY, O_WRONLY or O_RDWR
 which request opening the file read-only, write-only or read/write, respectively

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1

Example:
Open the /dev/rtc0.

int fd; // file descriptor for the /dev/rtc0 entry

fd = open("/dev/rtc0", O_RDWR);
if (fd == -1)
{
 /* Error Management Routine */
}

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 112 of 155

4.10.2. ioctl()
The ioctl() function manipulates the underlying device parameters. In particular, many
operating characteristics can be controlled with ioctl() requests.

Header file:
sys/ioctl.h
linux/rtc.h

Prototype:
int ioctl(int fildes, int request, ...)

Parameters:
fildes – file descriptor
request – device-dependent request code.

 The following ioctls request codes can be used for RTC:

 RTC_RD_TIME: to read time, returning the result as a Gregorian calendar date
and 24 hour wall clock time

 RTC_SET_TIME: to set/update time and date
 RTC_ALM_SET: to set the alarm time to wake up the system up to 24 hours in

the future
 RTC_ALM_READ: to read the alarm time set with the RTC_ALM_SET ioctl
 RTC_WKALM_SET: to issue alarms beyond the next 24 hours
 RTC_WKALM_RD: to read the alarm time set with the RTC_WKALM_SET ioctl
 RTC_AIE_ON: to enable the alarm
 RTC_AIE_OFF: to disable the alarm
 RTC_UIE_ON: to enable IRQs update whenever the "seconds" counter changes
 RTC_UIE_OFF: to disable IRQs update whenever the "seconds" counter changes

The third argument is a void * and depends on the ioctl request code used: see the
examples below.

Returns:
0 if operation is completed successfully, otherwise it is -1

Examples:

 RTC_RD_TIME

It is used to read time, returning the result as a Gregorian calendar date and 24 hour
wall clock time. The third argument is a pointer to a struct rtc_time used to
store the read values:

struct rtc_time {

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 113 of 155

 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
};

Example:

int retval;
struct rtc_time rtc_tm;

/* Read the RTC time/date */
retval = ioctl(fd, RTC_RD_TIME, &rtc_tm);
if (retval == -1)
{
 perror("RTC_RD_TIME ioctl");
 exit(errno);
}

 RTC_SET_TIME

It is used to set/update time. The third argument is a pointer to a struct rtc_time
that stores the value to be set.
Example:

int retval;
struct rtc_time rtc_tm;

/* Initialize the rtc_time struct to the value to be set later
*/
/* e.g. read the current RTC time/date and set it again */

/* Set the RTC time/date */
retval = ioctl(fd, RTC_SET_TIME, &rtc_tm);
if (retval == -1)
{
 perror("RTC_SET_TIME ioctl");
 exit(errno);
}

 RTC_ALM_SET

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 114 of 155

It is used to set the alarm time to wake up the system issuing an alarm IRQ up to 24
hours in the future. Only the tm_sec, tm_min, and tm_hour fields of struct
rtc_time structure are used.
Example:

int retval;
struct rtc_time rtc_tm;
int time = 10; /* time seconds used to set alarm */

/* Initialize the rtc_time struct to the alarm value ([time]
seconds) to be set later and check for rollover */
rtc_tm.tm_sec += time;

if (rtc_tm.tm_sec >= 60)
{
 rtc_tm.tm_sec %= 60;
 rtc_tm.tm_min++;
}

if (rtc_tm.tm_min == 60)
{
 rtc_tm.tm_min = 0;
 rtc_tm.tm_hour++;
}

if (rtc_tm.tm_hour == 24)
 rtc_tm.tm_hour = 0;

/* Set the alarm to [time] seconds in the future */
retval = ioctl(fd, RTC_ALM_SET, &rtc_tm);
if (retval == -1)
{
 if (errno == ENOTTY)
 {
 fprintf(stderr, "\n...Alarm IRQs not supported.\n");
 close(fd);
 }
 perror("RTC_ALM_SET ioctl");
 exit(errno);
}

 RTC_ALM_READ

It reads the alarm time set with the RTC_ALM_SET ioctl. The third argument is a
pointer to a struct rtc_time used to store the read values.
Example:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 115 of 155

int retval;
struct rtc_time rtc_tm;

/* Read the RTC Alarm time set */
retval = ioctl(fd, RTC_ALM_READ, &rtc_tm);
if (retval == -1)
{
 perror("RTC_RD_TIME ioctl");
 exit(errno);
}

 RTC_WKALM_SET

Same as RTC_ALM_SET but to issue alarms beyond the next 24 hours.

 RTC_WKALM_RD

Same as RTC_ALM_READ but to read the alarm time set with the RTC_WKALM_SET
ioctl.

 RTC_AIE_ON

It is used to enable the alarm set with RTC_ALM_SET. The third argument is ignored.
Example:

int retval;
struct rtc_time rtc_tm;

/* Enable alarm interrupts */
retval = ioctl(fd, RTC_AIE_ON, 0);
if (retval == -1)
{
perror("RTC_AIE_ON ioctl");
exit(errno);
}

 RTC_AIE_OFF

It is used to disable the alarm set with RTC_ALM_SET. The third argument is ignored.
Example:

int retval;
struct rtc_time rtc_tm;

/* Disable alarm interrupts */
retval = ioctl(fd, RTC_AIE_OFF, 0);
if (retval == -1)

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 116 of 155

{
 perror("RTC_AIE_OFF ioctl");
 exit(errno);
}

 RTC_UIE_ON

It is used to enable IRQs update whenever the "seconds" counter changes. The third
argument is ignored.
Example:

int retval;

/* Turn on update interrupts (one per second) */
retval = ioctl(fd, RTC_UIE_ON, 0);
if (retval == -1)
{
 if (errno == ENOTTY)
 {
 fprintf(stderr, "\n...Update IRQs not supported.\n");
 } }
 perror("RTC_UIE_ON ioctl");
 exit(errno);
}

 RTC_UIE_OFF

It is used to disable IRQs update whenever the "seconds" counter changes. The third
argument is ignored.
Example:

int retval;

/* Turn off update interrupts */
retval = ioctl(fd, RTC_UIE_OFF, 0);
if (retval == -1)
{
 perror("RTC_UIE_OFF ioctl");
 exit(errno);
}

4.10.3. close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate
means to make the file descriptor available for subsequent calls to open() or other
functions that allocate file descriptors.

Header file:
unistd.h

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 117 of 155

Prototype:
int close(int fildes)

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1

Example:
Close the watchdog device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.10.4. A Test Program

/*
 * Power Management Test Program
 */

#include <stdio.h>
#include <linux/rtc.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>

static const int default_time = 10;
static const char modes[2][8] = {"standby", "mem"};

int main(int argc, char **argv)
{
 int fd, retval;
 struct rtc_time rtc_tm;
 int time = default_time;
 const char *mode = modes[0];

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 118 of 155

 if (argc > 3) {
 fprintf(stderr, "usage: pwrmng_test [sleep_time]
[mode]\n"
 "[sleep_time] is expressd in seconds and
must be between 1 and 60\n"
 "[mode] can be \'standby\' or \'mem\'
(suspend-to-RAM)\n");
 return 1;
 }
 if (argc > 1)
 time = atoi(argv[1]);
 if (argc > 2)
 if (strcmp(argv[2], modes[1]) == 0)
 mode = modes[1];

 fprintf(stderr, "\n\t\t\tPower Management Test Program.\n\n"
 "Using %s for %d seconds\n\n",
 (mode == modes[0]) ? mode : "suspend-to-RAM",
time);
 fflush(stderr);
 sleep(1);

 while (1) {
 fd = open("/dev/rtc0", O_RDWR);
 if (fd == -1) {
 perror("/dev/rtc0");
 exit(errno);
 }

 /* Read the RTC time/date */
 retval = ioctl(fd, RTC_RD_TIME, &rtc_tm);
 if (retval == -1) {
 perror("RTC_RD_TIME ioctl");
 exit(errno);
 }

 /* Set the RTC time/date */
 retval = ioctl(fd, RTC_SET_TIME, &rtc_tm);
 if (retval == -1) {
 perror("RTC_SET_TIME ioctl");
 exit(errno);
 }

 /* Set the alarm to [time] seconds in the future, and
check for rollover */
 rtc_tm.tm_sec += time;
 if (rtc_tm.tm_sec >= 60) {

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 119 of 155

 rtc_tm.tm_sec %= 60;
 rtc_tm.tm_min++;
 }
 if (rtc_tm.tm_min == 60) {
 rtc_tm.tm_min = 0;
 rtc_tm.tm_hour++;
 }
 if (rtc_tm.tm_hour == 24)
 rtc_tm.tm_hour = 0;

 retval = ioctl(fd, RTC_ALM_SET, &rtc_tm);
 if (retval == -1) {
 if (errno == ENOTTY) {
 fprintf(stderr, "\n...Alarm IRQs not
supported.\n");
 close(fd);
 }
 perror("RTC_ALM_SET ioctl");
 exit(errno);
 }

 /* Enable alarm interrupts */
 retval = ioctl(fd, RTC_AIE_ON, 0);
 if (retval == -1) {
 perror("RTC_AIE_ON ioctl");
 exit(errno);
 }

 close(fd);

 fd = open("/sys/power/state", O_RDWR);
 if (fd == -1) {
 perror("/sys/power/state");
 exit(errno);
 }

 /* This blocks until the alarm ring causes an interrupt */
 retval = write(fd, (unsigned char *)mode, strlen(mode));
 if (retval == -1) {
 perror("write");
 exit(errno);
 }

 close(fd);
 }

 return 0;
}

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 120 of 155

4.11. SD/MMC
GE863-PRO³ support for Secure Digital (SD) and Multimedia Card (MMC) is built in the
kernel.

First create a directory where the device will be mounted, for example:

mkdir /mnt/sdcard

Then, connect the device and mount it:

mount /dev/mmcblk0p1 /mnt/sdcard

Depending on the SD or MMC cards and how they are partitioned, different device
names could be created on card insertion:

mount /dev/mmcblk0 /mnt/sdcard

is also possible when mmcblk0p1 is not created. In general would be correct to check
mmc devices before trying to mount it typing:

ls /dev/mmc*

The device is now ready to be used.

Note that the card filesystem must be Fat/Fat32 in order to work correctly.

To un-mount the device type:

umount /mnt/sdcard

4.12. Ethernet
The GE863-PRO³ Linux operating system is able to drive an Ethernet interface; the
Ethernet support is built as a module. To load the module type in the terminal:

modprobe macb

Once the module is loaded, you will find a new Ethernet device called eth0; to properly
configure the device use the ifconfig command.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 121 of 155

First of all you have to assign the MAC address:

ifconfig eth0 hw ether <MAC address>

For example:

ifconfig eth0 hw ether AA:BB:AA:BB:AA:BB

Then, you have to assign the IP address and netmask: you can assign it manually or you
can automatically set it by making a request from a dhcp server connected to the same
local network.
For manual configuration you have to type the following command:

ifconfig eth0 <ip address> netmask <netmask>

For example, suppose you want to assign the IP address 192.168.1.12 to the device,
with a netmask 255.255.255.0:

ifconfig eth0 192.168.1.12 netmask 255.255.255.0

On the contrary, for an automatic assignment, you can call the built-in dhcp client
application to request a IP address to dhcp server typing:

 # udhcpc -nq

The n option is not mandatory, but for memory optimizations it kills udhcpc application
once the IP address has been caught.
The q option is not mandatory as well, but it is very useful to avoid an infinite IP search:
in fact it quits the udhcpc application after some retries if the IP address assignment
has failed, due for example to a cable disconnection or to dhcp server powered down.

To test if everything works correctly on the device you can type:

ping <ip address of another station in the network>

And you should see packets transmission.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 122 of 155

4.13. USB

4.13.1. USB Mass Storage
Any type of USB Mass Storage Device can be connected to the GE863-PRO³. For that
purpose some kernel modules have to be loaded. Type in the terminal:

modprobe ohci-hcd
modprobe usb-storage

Now create a directory where the device will be mounted, for example:

mkdir /mnt/usbdev0

Connect the device then mount it:

mount /dev/sda1 /mnt/usbdev0

Note that the GE863-PRO³ has two USB ports A-type, so if you connect two devices they
will be called /dev/sda1 and /dev/sdb1.

To un-mount the device type:

umount /mnt/usbdev0

4.13.2. USB device (Ethernet Gadget)
The GE863-PRO³ has Ethernet on USB capabilities, so the USB link B-type (target side)
/ A-type (PC side) can behave like a normal Ethernet link. For that purpose some kernel
modules need to be loaded. Type in the terminal:

modprobe g_ether

Connect the USB cable and configure the interface:

ifconfig usb0 <ip address> netmask <netmask>

For example:

ifconfig usb0 192.168.121.3 netmask 255.255.255.0

To test the correct working of the device you can type:

ping <ip address of another station in the network>

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 123 of 155

And you should see packets transmission.

Note that: on the host you need to load the suitable drivers and configure the new
virtual Ethernet link for correct working. For further details refer to [4] .

To remove the link type:

ifconfig usb0 down

4.14. Timer Counter
The GE863-PRO3 is provided with a Timer Counter (TC) with three identical 16-bit Timer
Counter channels. Each channel can perform a wide range of functions, including
frequency measurement, event counting, interval measurement, pulse generation,
delay timing and pulse width modulation.
Each channel can be programmed to have a specific clock, chosen among three
external clock inputs, five internal clock inputs or two multi-purpose input/output
signals which can be configured by the user. Each channel can also generate processor
interrupts or not, depending of the user configuration.
Finally, the three channels can be chained to connecting the output of a Timer Counter
with the external clock input of another Timer Counter.

The Timer Counter can be set in one of the two modes available, the Capture Mode or
the Waveform Mode, depending of the features you want to run.
Briefly, the main tasks you can do are counting something until the counter reaches a
programmable value (using the Capture Mode) or generate waveforms (using the
Waveform Mode).
An example can be the use of the TC with the Analog to Digital Converter (ADC): the
ADC can receive the output waveform of the Timer Counter as an external trigger, and
start a new analog to digital conversion after each trigger received. For more
informations about ADC with TC see also the ADC chapter in this guide.

In this paragraph we’ll see how to use the Telit Timer Counter Driver and the options it
provides.

4.14.1. Loading the Timer Counter Module

To use the Timer Counter devices through the /dev interface of the Linux Operating
System, you have to load the tc.ko module.

To do this, select the folder containing that file and type

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 124 of 155

 insmod ./tc.ko

After the loading, in the /dev folder three devices will be created: they are called tc0,
tc1 and tc2.

4.14.2. open()

SD The open() function shall establish the connection between a file and a file
descriptor. The file descriptor is used by other I/O functions to refer to that file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path
flags – is an int specifying file opening mode: is one of O_RDONLY, O_WRONLY or

O_RDWR which request opening the file read-only, write-only or read/write,
respectively

Returns:
The new file descriptor fildes if successful, -1 otherwise

Example:
Open the /dev/tc0.

int fd; // file descriptor for the /dev/tc0 entry

if((fd = open("/dev/tc0", O_RDONLY) < 0)
{
 /* Error Management Routine */
} else {
 /* TC0 Device Opened */
}

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 125 of 155

4.14.3. ioctl()

The ioctl() function manipulates the underlying device parameters of special files. In
particular, many operating characteristics of character special files may be controlled
with ioctl() requests.

Header file:
sys/ioctl.h
linux/tc/tc.h

Prototype:
int ioctl(int fildes, int request, ...)

Parameters:
fildes – file descriptor

request – device-dependent request code.
 The following ioctls request codes can be used for Timer Counters:

 TC_SET_CAPTURE_MODE: to set the TC capture mode
 TC_SET_WAVEFORM_MODE: to set the TC waveform mode
 TC_GET_MODE: to get the current mode (capture or waveform)
 TC_GET_CAPTURE_SETTINGS: to get the capture mode settings
 TC_GET_WAVEFORM_SETTINGS: to get the waveform mode settings
 TC_SET_CLOCK, TC_GET_ CLOCK: to select/get the TC clock
 TC_ENABLE: to enable/disable the timer counter
 TC_SOFTWARE_TRIGGER: to generate a software trigger
 TC_GET_CV: to read the current value of the counter and how many

wraparounds occurred.
 TC_SET_RA, TC_GET_RA: to set/get the register A value (TC_SET_RA works in

waveform mode only)
 TC_SET_RB, TC_GET_RB: to set/get the register B value (TC_SET_RB works in

waveform mode only)
 TC_SET_RC, TC_GET_RC: to set/get the register C value.

The third argument is a void * and depends on the ioctl request code used: see the
examples below.

Returns:
0 if successful, -1 otherwise

Examples:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 126 of 155

 TC_SET_CAPTURE_MODE

The TC_SET_CAPTURE_MODE command allows the user to enter in the TC Capture
Operating Mode, useful to perform measurements such as pulse timing, frequency,
period, duty cycle and phase on TIOA and TIOB signals, which are considered as inputs.
The argument of the ioctl call is a pointer to a

struct tc_capture_mode{
 short ext_trg;
 short ext_trg_edge;
 short RC_trigger;
 short RA_load_edge;
 short RB_load_edge;
};

which is useful to customize the use of the Timer Counter in Capture Mode. In the
ext_trg field you can choose one between TIOA and TIOB as external trigger. The
effect of the trigger is to reset the counter and start the counter clock. To choose the
external trigger you have to give one of these values to ext_trg field:
TC_TIOA_EXT_TRG
TC_TIOB_EXT_TRG

Then you have to select the external trigger edge you want to use. To do this, set the
ext_trg_edge field with one of this option:

TC_NONE
TC_RISING_EDGE
TC_FALLING_EDGE
TC_EACH_EDGE

If you set ext_trg_edge = TC_NONE, the value set in ext_trg won’t be considered.

If you set the RC_trigger field with 1, when the counter will reach the value stored in
the register C it will be restarted from zero; if RC_trigger is set to 0, the register C
value won’t have any trigger effect on timer counter.
The RA_load_edge and RB_load_edge fields define during which edge of TIOA you
want to load the current timer counter value to, respectively, register A or register B.
To do this, set both RA_load_edge and RB_load_edge with one of this option:

TC_NONE
TC_RISING_EDGE
TC_FALLING_EDGE
TC_EACH_EDGE

In the following example for the Capture Mode we want to know the time elapsed
between the rising and the falling edge of TIOA, using TIOA also as external trigger. To
do so, we set TC_TIOA_EXT_TRG as external trigger on TC_RISING_EDGE: in this way,

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 127 of 155

during the rising edge the counter will be set to zero and restarded. Then we set
RA_load_edge on TC_FALLING_EDGE: in this way the value of the counter will be
stored in RA when TIOA edge is falling. Then we simply read RA to know the value we
wanted.

struct tc_capture_mode cmd;
cmd.ext_trg = TC_TIOA_EXT_TRG;
cmd.ext_trg_edge = TC_RISING_EDGE;
cmd.RC_trigger = 0;
cmd.RA_load_edge = TC_FALLING_EDGE;

ret=ioctl(fd, TC_SET_CAPTURE_MODE, &cmd);
if (ret < 0)

printf("An error occurred in ioctl");

 TC_SET_WAVEFORM_MODE

The TC_SET_ WAVEFORM_MODE command allows the user to enter in the TC
Waveform Operating Mode. In this mode the TC channel can generate 1 or 2 PWM
signals with the same fre-quency and independently programmable duty cycles, or
generate different types of one-shot or repetitive pulses. To do this, TIOA is configured
as an output and TIOB is defined as an output if it is not used as an external event. The
argument of the ioctl call is a pointer to a:

struct tc_waveform_mode{
 short ext_event;
 short ext_event_edge;
 short wave_sel;
 short ra_2_tioa; /* RA Compare Effect on TIOA */
 short rc_2_tioa; /* RC Compare Effect on TIOA */
 short extevnt_2_tioa; /* External Event Effect on TIOA */
 short swttrg_2_tioa; /* Software Trigger Effect on TIOA
*/
 short rb_2_tiob; /* RB Compare Effect on TIOB */
 short rc_2_tiob; /* RC Compare Effect on TIOB */
 short extevnt_2_tiob; /* External Event Effect on TIOB */
 short swttrg_2_tiob; /* Software Trigger Effect on TIOB
*/
};

So you have to set these parameters to customize the waveform mode. In the
ext_event field you can choose the external event source using

TC_TIOB_EXT_EVENT /* TIOB generate external events */
TC_XC0_EXT_EVENT /* XC0 generate external events */
TC_XC1_EXT_EVENT /* XC1 generate external events */
TC_XC2_EXT_EVENT /* XC2 generate external events */

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 128 of 155

If TIOB is chosen as the external event signal, it is configured as an input and no longer
generates waveforms and IRQs.

Then you have to select the external event edge you want to use. To do this, set the
ext_event_edge field with one of this option:

TC_NONE
TC_RISING_EDGE
TC_FALLING_EDGE
TC_EACH_EDGE

The wave_sel field selects the behavior of the 16-bit counter values and consequently
the behavior of the TIOA and TIOB outputs, depending on the values of the registers A,
B and C. When wave_sel = TC_UP_MODE the counter value is incremented from 0 to
0xFFFF, and then it’ll be automatically reset. Once the counter value has been reset, it
is then incremented and so on. See the following figure:

If you use an external trigger, the counter value will be reset and restarted not only
when 0xFFFF is reached, but also when a trigger occurs:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 129 of 155

When wave_sel = TC_UP_MODE_AUTO the counter value is incremented from 0 to the
value of register C, and then it’ll be automatically reset. Once the counter value has
been reset, it is then incremented and so on. See the following figure:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 130 of 155

If you use an external trigger, the counter value will be reset and restarted not only
when Register C value is reached, but also when a trigger occurs:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 131 of 155

When wave_sel = TC_UPDOWN_MODE the counter value is incremented from 0 to
0xFFFF. Once that value is reached, the counter value is decremented to 0, then re-
incremented to 0xFFFF and so on:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 132 of 155

If you use an external trigger, the counter value will be decremented not only when
0xFFFF is reached, but also when a trigger occurs. Furthermore, if the counter value is
decrementing and a trigger occurs, the counter value will be incremented:

When wave_sel = TC_UPDOWN_MODE_AUTO the counter value is incremented from 0
to the value of register C. Once that value is reached, the counter value is decremented
to 0, then re-incremented to Register C value and so on:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 133 of 155

If you use an external trigger, the counter value will be decremented not only when
Register C value is reached, but also when a trigger occurs. Furthermore, if the
counter value is decrementing and a trigger occurs, the counter value will be
incremented:

The other fields have to be set to specify the effect of the available events on the TIOA
and TIOB outputs. The possible values for these fields are:

TC_NONE
TC_SET /*set the output to 1 */
TC_CLEAR /*set the output to 0 */
TC_TOGGLE /*set the output to 0 if it’s 1, otherwise to 1*/

For example, if we want TIOA signal to become high when the timer counter reaches
the value stored in Register C, we’ll have to put rc_2_tioa = TC_SET; if we want
TIOB signal to be low when a software trigger occurs, we’ll have to put
swttrg_2_tiob = TC_CLEAR; if we want TIOA to change its state from high to low
and from low to high when an external event occurs, we’ll put extevnt_2_tioa =
TC_TOGGLE; if the other events don’t care, we’ll put ra_2_tioa = TC_NONE,
swttrg_2_tioa = TC_NONE, etc…

In this example of use for the Waveform Mode we want to generate a regular output
signal on the TIOA line, so we disable the external events, set the up mode and set the
TIOA output to 1 when the counter reaches the Register A value and to 0 when it
reaches the Register C value:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 134 of 155

struct tc_waveform_mode cmd;
cmd.ext_event_edge = TC_NONE;
cmd.wave_sel = TC_UP_MODE;
cmd.ra_2_tioa = TC_SET;
cmd.rc_2_tioa = TC_CLEAR;
ret=ioctl(fd, TC_SET_WAVEFORM_MODE, &cmd);
if (ret < 0)
 printf("An error occurred in ioctl");

Besides we have to set Register C to 0xFFFF and Register A to 0x7FFF. The following
figure shows the waveform generated with the above code:

 TC_GET_MODE

The TC_GET_MODE command allows the user to know the current mode (capture or
waveform).

int cmd;
ret=ioctl(fd, TC_GET_MODE, &cmd);
if (ret < 0)
{

printf("An error occurred in ioctl");
}
else{
 if(cmd == TC_CAPTURE_MODE)
 {

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 135 of 155

 printf("Capture Mode");
 }
 if(cmd == TC_WAVEFORM_MODE)

{
 printf("Waveform Mode");
 }
}

 TC_GET_CAPTURE_SETTINGS

The TC_GET_CAPTURE_SETTINGS command allows the user to know the current TC
settings (only if the current mode is Capture Mode).

int cmd;
struct tc_capture_mode tccm;
ret=ioctl(fd, TC_GET_MODE, &cmd);
if (ret < 0)
{

printf("An error occurred in ioctl");
}
else{
 if(cmd == TC_CAPTURE_MODE)
 {

 ret=ioctl(fd, TC_GET_CAPTURE_SETTINGS, &tccm);
 }

}

 TC_GET_WAVEFORM_SETTINGS

The TC_GET_WAVEFORM_SETTINGS command allows the user to know the current TC
settings (only if the current mode is Waveform Mode).

int cmd;
struct tc_waveform_mode tcwm;
ret=ioctl(fd, TC_GET_MODE, &cmd);
if (ret < 0)
{

printf("An error occurred in ioctl");
}
else{
 if(cmd == TC_WAVEFORM_MODE)

{
 ret=ioctl(fd, TC_GET_WAVEFORM_SETTINGS, &tcwm);

 }
}

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 136 of 155

 TC_SET_CLOCK, TC_GET_CLOCK

The timer counter needs a clock pulse to work, so you have to choose the clock you
want through the TC_SET_CLOCK command, which also allows the user to set other
options. To do this, you have to use the ioctl call with this argument

struct tc_clock{
 short sel_clk;
 short clk_invert;
 short burst;
 short stop_on_load_RB;
 short disable_on_load_RB;
 short stop_on_RC_compare;
 short disable_on_RC_compare;
};

The sel_clk field must be set with the selected clock, chosen among an internal clock

TC_TIMER_CLOCK1 /* master clock / 2 */
TC_TIMER_CLOCK2 /* master clock / 8 */
TC_TIMER_CLOCK3 /* master clock / 32 */
TC_TIMER_CLOCK4 /* master clock / 128 */
TC_TIMER_CLOCK5 /* slow clock */

or an external clock
TC_TCLK0 /* external clock 0 */
TC_TCLK1 /* external clock 1 */
TC_TCLK2 /* external clock 2 */
TC_TIOA0
TC_TIOA1
TC_TIOA2

In the case you choose an external clock, you must consider that for the Timer Counter
i you can use only the TC_TCLKi and you can’t use the TC_TIOAi. For example, the
external clocks available for Timer Counter 1 are TC_TCLK1, TC_TIOA0 and
TC_TIOA2. The external clock chosen will be called TC_XCi. By default, TC_XC0 =
TC_TCLK0, TC_XC1 = TC_TCLK1, TC_XC2 = TC_TCLK2.

With the clk_invert field you can decide to increment the counter on rising edge of
the clock (if clk_invert = 0), or on the falling edge (if clk_invert = 1).

The burst field can be set to AND the chosen clock with an external signal (XC0, XC1
or XC2). Use the following macros:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 137 of 155

TC_NONE /* Clock isn’t gated by an external signal
*/

TC_XC0 /* the clock is ANDed with external clock 0
*/

TC_XC1 /* the clock is ANDed with external clock 1
*/

TC_XC2 /* the clock is ANDed with external clock 2
*/

The stop_on_load_RB and disable_on_load_RB fields work in Capture Mode only.
If one of these fields is set to 1, whenever the counter value is loaded on register B the
counter will be respectively stopped or disabled. The difference is that if the counter is
stopped it can be restarded through a (hardware or software) trigger, while if the
counter is disabled it can be re-enabled only with an ioctl call with the TC_ENABLE
option.

The stop_on_RC_compare and disable_on_RC_compare fields are similar to the
previous and work in Waveform Mode only. If one of these fields is set to 1, whenever
the counter value reaches the value stored in register C the counter will be respectively
stopped or disabled.

If you want to know the current configuration of the clock, type the command:

struct tc_clock tcc;
ret=ioctl(fd, TC_GET_CLOCK, &tcc);
if (ret < 0)
{

printf("An error occurred in ioctl");
}
else

{
/* your code */

}

 TC_ENABLE

After choosing the Timer Counter mode and the clock, you have to enable the Timer if
you want to start working. To do so, use the command:

ret=ioctl(fd, TC_ENABLE, 1);
if (ret < 0)
{

printf("An error occurred in ioctl");
}

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 138 of 155

To disable the clock, use the command

ret=ioctl(fd, TC_ENABLE, 0);
if (ret < 0)
{

printf("An error occurred in ioctl");
}

When the Timer Counter is disabled it can’t be started or stopped.

 TC_SOFTWARE_TRIGGER

A software trigger has the effect of resetting the counter and restarting it from zero. To
give a software trigger to the timer Counter, type the command:

ret=ioctl(fd, TC_SOFTWARE_TRIGGER, 0);
if (ret < 0)
{

printf("An error occurred in ioctl");
}

A software (or hardware) trigger doesn’t have any effect if the timer is not enabled.

 TC_GET_CV

An ioctl with this option returns the current value of the Timer Counter and gets the
number of times the Counter reached the maximum value and restarted (since the last
software trigger or enable condition). The used structure is:

struct tc_value{
 int value;
 unsigned long wraparounds;
};

The value field can reach the maximum value (0xFFFF) if no trigger on Register C
compare was previously enabled (see TC_SET_CAPTURE_MODE and
TC_SET_WAVEFORM_MODE ioctl options in this guide). Otherwise, the maximum
reachable value is equal to the Register C value.
The wraparounds field contains the times the maximum value was reached since the
last software trigger or “enable” condition.
This is an example of use where the maximum reachable value is 0xFFFF:

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 139 of 155

struct tc_value cmd;
ret=ioctl(fd, TC_GET_CV, &cmd);
if (ret < 0)
{

printf("An error occurred in ioctl");
}
else{

printf("The Counter Value is %d",cmd.wraparounds * 0xFFFF +
cmd.value);
}

 TC_SET_RA, TC_GET_RA, TC_SET_RB, TC_GET_RB, TC_SET_RC, TC_GET_RC

When the Timer Counter is in Waveform Mode you need to use Register A, Register B
and Register C to perform comparison with the Counter Value. You can set their value
in a range between 0 and 0xFFFF. This is an example of use:

ret=ioctl(fd, TC_SET_RA, 0x7FFF);
if (ret < 0)
{

printf("An error occurred in ioctl");
}

Register A and Register B can be set only in Waveform Mode.

When the Timer Counter is in Capture Mode the counter value can be stored in Register
A or Register B when a programmable event occurs. Follow this example to read a
register value:

int value;
ret=ioctl(fd, TC_GET_RA, &value);
if (ret < 0)
{

printf("An error occurred in ioctl");
}
else{
 printf("The Register A Value is %d",value);

}

Register A and Register B can be read both in Waveform Mode and in Capture Mode.
Register C can be set and read in both Waveform Mode and in Capture Mode.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 140 of 155

4.14.4. close()

The close() function shall deallocate the file descriptor indicated by fildes. To deallocate
means to make the file descriptor available for return by subsequent calls to open() or
other functions that allocate file descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes);

Parameters:
fildes – file descriptor

Returns:
0 if successfull, -1 otherwise

Example:
Close the TC device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 141 of 155

5. ISO7816 – Smartcard Reader
The GE863-PRO³-EVK provides an ISO7816 smartcard reader. Please refer to [3] for
hardware configuration before using the ISO7816 smartcard reader.
Once a smartcard has been inserted into the reader, the following applications can be
run from command line:

 iso7816-format
 iso7816-write
 iso7816-read
 iso7816-test

These applications are developed using the ISO7816 Library which supports Cryptoflex
32K e-gate smartcards only.

The iso7816-format application can be used to format a smartcard (creates the on-
board ISO7816-4 file that is used for storage):

iso7816-format

The on-board ISO7816-4 file can be erased and therefore the smartcard can be
unformatted typing:

iso7816-format -u

The iso7816-write and iso7816-read applications can be used to test the
smartcard. The first writes 1024 bytes onto the card while the latter checks if data read
back from the smart-card matches with the one written by the iso7816-write
program.
The main ISO-7816 Library test program that performs random writes and reads is
iso7816-test.

The ISO-7816 Library APIs described below can be used to write programs for
smartcard programming.

5.1. ISO-7816 APIs
The ISO7816 Library supports Cryptoflex 32K e-gate smartcards only.
The very first operation to be executed in order to use ISO7816 library is the
iso7816_init() function, that gives the application access to the serial port device and
configures it in ISO7816 mode. Then, the reset operation should follow, through the
iso7816_reset() function, that allows an application to connect to the smartcard device.
This function checks the Answer To Reset (ATR) returned by the card, in order to

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 142 of 155

ensure it is operating with the right type of card. After a successful reset, it is possible
to:

 format the card
 write data into the card
 read data written into the card
 unformat the card

Optionally, once smartcard services are not needed anymore, the iso7816_cleanup()
function may be called.

5.1.1. Defines
16-bit identifier of on-board file:
#define ISO7816_FILE_ID 0x1234

Predefined size of the on-board file:
#define ISO7816_FILE_SZ 1024

5.1.2. Types
The basic type used by all of the ISO7816 library functions is defined as follows:

typedef struct _iso7816_slot iso7816_slot

where struct _iso7816_slot is:

struct _iso7816_slot
{
 int fd; /**< File descriptor **/
 int reset; /**< If the card was reset **/
 unsigned int pos; /**< Position of the next read/write
 operation **/
};

An iso7816_slot variable must be always initialized through a call to
iso7816_init() before calling any other function. Internal fields of the structure
must be never accessed directly but only through an API call.

5.1.3. Enums
The enum iso7816_rv is the ISO7816 Library error code:

/** ISO7816 Library error code **/
typedef enum iso7816_rv
{
/** Operation successfully completed **/

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 143 of 155

 ISO7816_OK = 0,
/** Operation failed because there is no card,
 ** or the card is of the wrong type **/
 ISO7816_E_NOCARD = -1,
/** Operation failed because parameters are not valid **/
 ISO7816_E_INVAL = -2,
/** Operation failed because of general I/O issues **/
 ISO7816_E_IO = -3,
/** Operation failed because inconsistent with the
 ** current card or library status **/
 ISO7816_E_STATUS = -4,
/** Operation failed because of a lack of authorization **/
 ISO7816_E_UNAUTHORIZED = -5,
/** Not enough on-board EEPROM **/
 ISO7816_E_EEPROM_MEMORY = -6
} iso7816_rv;

5.1.4. Functions

5.1.4.1. iso7816_strerror()

The iso7816_strerror() function turns into strings ISO7816 Library error codes.

Header file:
iso7816.h

Prototype:
const char * iso7816_strerror(int rv)

Parameters:
rv – return value of another library function

Returns:
one of the string contained into the following:

static char *iso7816_errors[] = {
 "Operation successfully completed",
 "No card detected, or wrong card type",
 "Invalid parameters",
 "General I/O error",
 "Requested operation inconsistent with status",
 "Unauthorized",
 "No EEPROM space"
};

or "Unknown error" string for an unkwon error

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 144 of 155

Example:
int rv;
iso7816_slot slot;
rv = iso7816_cleanup(&slot);
if (rv != ISO7816_OK)
 fprintf(stderr, "Unrecoverable error: %s\n",
iso7816_strerror(rv));

5.1.4.2. iso7816_init ()

The iso7816_init() function initializes the serial communication with the ISO7816 slot.

Header file:
iso7816.h

Prototype:
iso7816_rv iso7816_init(iso7816_slot *p_slot, const char *device_name)

Parameters:
p_slot – pointer to the iso7816_slot structure to be initialized
device_name – path of the device connected to the smartcard reader (default:
/dev/ttyS1)

Returns:
An iso7816_rv error code

Example:
int rv;
iso7816_slot slot;

printf("Initializing...\n");
rv = iso7816_init(&slot, "/dev/ttyS1");
if (rv != ISO7816_OK)
 /* Error Management */

5.1.4.3. iso7816_reset ()

The iso7816_reset() function resets and identifies the smart-card device type. In order
to detect correctly card insertion, iso7816_reset() shall be called after
iso7816_cleanup() and iso7816_init().
Header file:
iso7816.h

Prototype:
iso7816_rv iso7816_reset(iso7816_slot *p_slot)

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 145 of 155

Parameters:
p_slot – pointer to the iso7816_slot structure

Returns:
An iso7816_rv error code

Example:
int rv;
iso7816_slot slot;

printf("Resetting...\n");
rv = iso7816_reset(&slot);
while (rv != ISO7816_OK)
{
 printf("Waiting for card insertion...\n");
 sleep(1);

iso7816_cleanup(&slot);
iso7816_init(&slot, "/dev/ttyS1");

 rv = iso7816_reset(&slot);
};

5.1.4.4. iso7816_format ()

The iso7816_format() formats the smart-card device.

Header file:
iso7816.h

Prototype:
iso7816_rv iso7816_format(iso7816_slot *p_slot);

Parameters:
p_slot – pointer to the iso7816_slot structure

Returns:
An iso7816_rv error code

Example:
int rv;
iso7816_slot slot;

printf("Formatting device...\n");
rv = iso7816_format(&slot);
if (rv != ISO7816_OK)
 /* Error Management */

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 146 of 155

5.1.4.5. iso7816_unformat ()

The iso7816_unformat() unformats the smart-card device.

Header file:
iso7816.h

Prototype:
iso7816_rv iso7816_unformat(iso7816_slot *p_slot);

Parameters:
p_slot – pointer to the iso7816_slot structure

Returns:
An iso7816_rv error code

Example:
int rv;
iso7816_slot slot;

printf("Unformatting device...\n");
rv = iso7816_unformat(&slot);
if (rv != ISO7816_OK)
 /* Error Management */

5.1.4.6. iso7816_read ()

The iso7816_read() reads the specified number of bytes from the current seek position
which is correspondingly advanced.

Header file:
iso7816.h

Prototype:
iso7816_rv iso7816_read(iso7816_slot *p_slot, uint8_t *buf, uint16_t buf_len)

Parameters:
p_slot – pointer to the iso7816_slot structure
buf – destination buffer
buf_len – number of bytes to be read

Returns:
An iso7816_rv error code

Example:
int rv, len;

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 147 of 155

uint8_t buf_read[ISO7816_FILE_SZ];
iso7816_slot slot;

len = 1024;

printf("Reading %d bytes...\n", len);
rv = iso7816_read(&slot, buf_read, len);
if (rv != ISO7816_OK)
 /* Error Management */

5.1.4.7. iso7816_write ()

The iso7816_write() writes the specified number of bytes to the current seek position
which is correspondingly advanced.

Header file:
iso7816.h

Prototype:
iso7816_rv iso7816_write(iso7816_slot *p_slot, uint8_t *buf, uint16_t buf_len)

Parameters:
p_slot – pointer to the iso7816_slot structure
buf – source buffer
buf_len – number of bytes to be written

Returns:
An iso7816_rv error code

Example:
int rv, len, i;
uint8_t buf[ISO7816_FILE_SZ];
iso7816_slot slot;

/* Initialize buf with a random number generator */
len = 1024;
for (i = 0; i < len; ++i)
 buf[i] = (uint8_t) rnd(256);

printf("Writing %d random bytes...\n", len);
rv = iso7816_write(&slot, buf, len);
if (rv != ISO7816_OK)
 /* Error Management */

5.1.4.8. iso7816_seek ()

The iso7816_seek() sets the seek position to a specific offset.

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 148 of 155

Header file:
iso7816.h

Prototype:
iso7816_rv iso7816_seek(iso7816_slot *p_slot, uint16_t pos)

Parameters:
p_slot – pointer to the iso7816_slot structure
pos – position offset

Returns:
An iso7816_rv error code

Example:
int rv, pos;
iso7816_slot slot;

pos = 512;

rv = iso7816_seek(&slot, pos);
if (rv != ISO7816_OK)
 /* Error Management */

5.1.4.9. iso7816_cleanup()

The iso7816_ cleanup() cleans-up the serial communication with the ISO7816 slot.

Header file:
iso7816.h

Prototype:
iso7816_rv iso7816_cleanup(iso7816_slot *p_slot)

Parameters:
p_slot – pointer to the iso7816_slot structure

Returns:
An iso7816_rv error code

Example:
int rv;
iso7816_slot slot;

printf("Cleaning up...\n");
rv = iso7816_cleanup(&slot);

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 149 of 155

if (rv != ISO7816_OK)
 /* Error Management */

printf("Exiting...\n");

return 0;

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 150 of 155

6. CMUX
GE863-PRO³ implements the GSM 7.10 multiplexing protocol that enables one serial
interface to transmit data to different customer applications. Using the multiplexer
features, GE863-PRO³ can perform e.g. a fax/data/GPRS call while using the SMS
service.
Cmux protocol can be enabled by starting cmuxt daemon once the modem has been
turned on, with the options shown below:

Synopsis

cmuxt [parameters]

Parameters

-p <serport> : Serial port device to connect to [default value: /dev/ttyS1]
-b <baudrate> : MUX mode baudrate [0,9600,19200,...115200]
-t <delay> : Escape Prompt Delay expressed in fiftieth of a second [20,…255]
-e <char> : Escape Character [0,....255]
-u <sleep time> : Sleep time after send AT command (msec)
-c : (crtscts) Hw control OFF
-d : Daemonize: create a daemon
-l : Don't make pts symLinks. Links needs root privileges
-v : Show cmuxt version
-h -? : Show this help message

Please note that if –t and/or –e options are not used to specify different values for
Escape Prompt Delay and Escape Character respectively, the following default values
will be used (please see [7]):

 50 (1 second) for Escape Prompt Delay
 43 (“+”) for Escape Character

In any case, at cmuxt termination, the startup values (the ones set into modem before
cmux running) for the Escape Prompt Delay and Escape Character will be restored.

Since GE863-PRO³ use /dev/ttyS3 device to access to modem, cmuxt is called
typing:

cmuxt –p /dev/ttyS3 –b 115200 –d

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 151 of 155

Once cmuxt has been started the following four devices are created into /dev
directory:

/dev/cmux1
/dev/cmux2
/dev/cmux3
/dev/cmux4

The devices above are the serial virtual channels that have to be accessed by
applications in order to perform multiple operations at the same time (see figure
below).

Please note: virtual port cmux4 is reserved and cannot be used.

GE863-PRO³

C

6.1. Code example
Cmux virtual channels can be simply managed as a serial device as shown in the
example below:

 Open the virtual channel port (for example /dev/cmux1):

int fdPts;
cmux_port[] = "/dev/cmux1";
struct termios serCfg;

if((fdPts = open(cmux_port, O_RDWR)) < 0)
 return -1;
else if(tcgetattr(fdPts, &serCfg)!= 0)
 return -1;

ttttyySS33

ccmmuuxx11 AApppplliiccaattiioonn 11

AApppplliiccaattiioonn 22
CMMUUXX

MODEM

ccmmuuxx22

ccmmuuxx33 AApppplliiccaattiioonn 33

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 152 of 155

cfmakeraw(&serCfg);

if(tcsetattr(fdPts, TCSANOW, &serCfg) != 0)
 return -1;

 Commit the desired operation:

/* Write example */
char AT_cmd1[] = "AT&V?\r";

if write(fdPts, AT_cmd1, strlen(AT_cmd1)) < 0)
{
 /* ERROR MANAGEMENT ROUTINE */
} else {
 /* VALUE WRITTEN */
}
/* Read example */
char read_buff[BUFF_LEN];

read(fdPts, read_buff, sizeof(read_buff));

 Close the serial port

close(fdPts);

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 153 of 155

7. Using external flash memories
The GE863-PRO3 and in particular the ARM-9 supplied within the GE863-PRO3 might be
connected to an external Flash Memory using one of the two available SPI buses.
This chapter describes how a JFFS2 file system can be mounted over the external
memories provided on the Pro3 Memory Board.

7.1. Supported external flash memories
The GE863-PRO³ Linux kernel can support the external flash memories
(STMicroelectronics M25P32, M25P64, M25P128), provided on the Pro3 Memory Board
connected to GE863-PRO³, through the SPI0 bus only.

 M25P32:

o The smallest erasable unit is a sector

o 1 page is 256 bytes

o 1 sector is 256 pages

o The entire flash size is 0x400000 (4194304) bytes and has 64 sectors of
65536 bytes

 M25P64:

o The smallest erasable unit is a sector

o 1 page is 256 bytes

o 1 sector is 256 pages

o The entire flash size is 0x800000 (8388608) bytes and has 128 sectors of
65536 bytes

 M25P128:

o The smallest erasable unit is a sector

o 1 page is 256 bytes

o 1 sector is 1024 pages

o The entire flash size is 0x1000000 (16777216) bytes and has 64 sectors of
262144 bytes

GE863-PRO3 Linux Software User Guide
 1vv0300781 Rev.5 – 2010-01-25

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 154 of 155

7.2. Erasing the flash memory

This step shall be performed when the flash is used for the first time or whenever it
shall be erased4.

flash_eraseall command performs erasing on every flash partition.

flash_eraseall command is already present in the delivered Linux file system and
takes the parameter mtdX (number associated to the flash partition to erase).

The association between the number X and the flash partition can be shown typing cat
/proc/mtd on shell:

cat /proc/mtd
dev: size erasesize name
mtd0: 00131400 00000210 "ARMboot"
mtd1: 002eec00 00000210 "root"
mtd2: 00400000 00010000 "spi0.0"
mtd3: 00800000 00010000 "spi0.2"

In this example, mtd2 is associated to the flash connected to chip select 0 on spi bus 0
(M25P32) and mtd3 is associated to the flash connected to chip select 2 on spi bus 0
(M25P64).

So to use flash_eraseall command just type:

flash_eraseall /dev/mtdX

where X shall be replaced with the number, retrieved from the previous command,
associated to the flash partition to erase.

After a few seconds all the flash will be erased and will be ready to be used.

7.3. Mounting a JFFS2 file system
Once the flash has been erased, it is possible to mount and use the new file system
located over the external flash.

Type the command:

4 Please note that once the erased procedure is completed all the data contained in the flash will be lost.

GE863-PRO3 Linux Software User Guide

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 155 of 155

 1vv0300781 Rev.5 – 2010-01-25

mount –t jffs2 /dev/mtdblockX /mnt/ExternalFlash

X shall be replaced with the number associated to the flash partition to format as
described in 7.2.
The external flash is now ready to be used and it is showed as a normal directory (in
this case, directory is /mnt/ExternalFlash). ExternalFlash could be replaced
with whichever directory name.

For example, to copy a file, just type:

cp filename /mnt/ExternalFlash

The external flash file system shall be used as a normal file system. Everything stored
in the external flash will be available after a reboot by simply remounting it (see mount
command above).

To un-mount the external flash, type:

umount /mnt/ExternalFlash

	Introduction
	1.1. Scope
	1.2. Audience
	1.3. Contact Information, Support
	1.4. Open Source Licenses
	1.5. Product Overview
	1.6. Document Organization
	1.7. Text Conventions
	1.8. Related Documents
	1.9. Document History

	GE863-PRO³ Architecture
	2.1. Hardware
	2.2. Software
	2.2.1. Telit Bootloader
	2.2.2. Telit customized U-boot
	2.2.3. Linux kernel
	2.2.3.1. Overview
	2.2.3.2. The GE863-PRO³ Linux kernel

	2.2.4. Filesystem
	2.2.4.1. Overview
	2.2.4.2. The filesystem structure
	2.2.4.3. Busybox

	3. System Startup
	3.1. Startup process
	3.2. The Linux shell
	3.3. Loading a module
	3.4. Auto-Setup at system startup
	3.5. Time-based scheduling service
	3.6. Downloading a file into GE863-PRO3
	3.6.1. Downloading a file using the Ethernet connection
	3.6.2. Downloading a file using an USB mass storage device
	3.6.3. Downloading/Uploading a file using a serial port

	3.7. Version statistics

	4. Device Drivers
	4.1. Serial port
	4.1.1. open()
	4.1.2. read()
	4.1.3. write()
	4.1.4. close()
	4.1.5. termios interface
	4.1.5.1. Structure and Types
	4.1.5.2. Functions
	4.1.5.2.1. tcgetattr()
	4.1.5.2.2. tcsetattr()
	4.1.5.2.3. tcsendbreak()
	4.1.5.2.4. tcdrain()
	4.1.5.2.5. tcflush()
	4.1.5.2.6. tcflow()
	4.1.5.2.7. cfmakeraw()
	4.1.5.2.8. cfgetispeed()
	4.1.5.2.9. cfgetospeed()
	4.1.5.2.10. cfsetispeed()
	4.1.5.2.11. cfsetospeed()

	4.1.5.3. A Test Program

	4.2. I2C
	4.2.1. Loading i2c modules
	4.2.2. open()
	4.2.3. ioctl()
	4.2.4. read()
	4.2.5. write()
	4.2.6. close()
	4.2.7. A Test Program

	4.3. SPI
	4.3.1. Loading the SPI module
	4.3.2. open()
	4.3.3. ioctl()
	4.3.4. read()
	4.3.5. write()
	4.3.6. close()
	4.3.7. A Test Program

	4.4. GPIO
	4.4.1. Loading the GPIO module
	4.4.2. open()
	4.4.3. read()
	4.4.4. write()
	4.4.5. close()

	4.5. Ge863pro3_GPIO
	4.5.1. Interrupt description
	4.5.2. Loading the GPIO module
	4.5.3. open()
	4.5.4. ioctl()
	4.5.5. read()
	4.5.6. write()
	4.5.7. Interrupt routine customization
	4.5.8. close()
	4.5.9. A Test Program

	4.6. ADC
	4.6.1. Loading the ADC Module
	4.6.2. open()
	4.6.3. ioctl()
	4.6.4. read()
	4.6.5. close()

	4.7. SSC
	4.7.1. Loading the SSC module
	4.7.2. open()
	4.7.3. ioctl()
	4.7.4. read()
	4.7.5. write()
	4.7.6. close()
	4.7.7. A Test Program

	4.8. Watchdog
	4.8.1. open()
	4.8.2. ioctl()
	4.8.3. close()

	4.9. Power Management
	4.9.1. open()
	4.9.2. write()
	4.9.3. close()

	4.10. Real Time Clock (RTC)
	4.10.1. open()
	4.10.2. ioctl()
	4.10.3. close()
	4.10.4. A Test Program

	4.11. SD/MMC
	4.12. Ethernet
	4.13. USB
	4.13.1. USB Mass Storage
	4.13.2. USB device (Ethernet Gadget)

	4.14. Timer Counter
	4.14.1. Loading the Timer Counter Module
	4.14.2. open()
	4.14.3. ioctl()
	4.14.4. close()

	5. ISO7816 – Smartcard Reader
	5.1. ISO-7816 APIs
	5.1.1. Defines
	5.1.2. Types
	5.1.3. Enums
	5.1.4. Functions
	5.1.4.1. iso7816_strerror()
	5.1.4.2. iso7816_init ()
	5.1.4.3. iso7816_reset ()
	5.1.4.4. iso7816_format ()
	5.1.4.5. iso7816_unformat ()
	5.1.4.6. iso7816_read ()
	5.1.4.7. iso7816_write ()
	5.1.4.8. iso7816_seek ()
	5.1.4.9. iso7816_cleanup()

	6. CMUX
	6.1. Code example

	7. Using external flash memories
	7.1. Supported external flash memories
	7.2. Erasing the flash memory
	7.3. Mounting a JFFS2 file system

