

GE863-PRO3 Linux CAN Package
Software User Guide
For GE863-PRO3 with Linux OS
1vv0300866 Rev. 0 – 2009-11-27

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 2 of 60

Disclaimer

The information contained in this document is the proprietary information of Telit
Communications S.p.A. and its affiliates (“TELIT”).
The contents are confidential and any disclosure to persons other than the officers,
employees, agents or subcontractors of the owner or licensee of this document,
without the prior written consent of Telit, is strictly prohibited.

Telit makes every effort to ensure the quality of the information it makes available.
Notwithstanding the foregoing, Telit does not make any warranty as to the
information contained herein, and does not accept any liability for any injury, loss or
damage of any kind incurred by use of or reliance upon the information.

Telit disclaims any and all responsibility for the application of the devices
characterized in this document, and notes that the application of the device must
comply with the safety standards of the applicable country, and where applicable,
with the relevant wiring rules.

Telit reserves the right to make modifications, additions and deletions to this
document due to typographical errors, inaccurate information, or improvements to
programs and/or equipment at any time and without notice.
Such changes will, nevertheless be incorporated into new editions of this document.

All rights reserved.

© 2009 Telit Communications S.p.A.

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 3 of 60

Applicable Products

PRODUCT

 GE863-PRO3 with
Linux OS

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 4 of 60

Contents

1. Introduction ... 7

1.1. Scope .. 7

1.2. Audience ... 7

1.3. Contact Information, Support .. 7

1.4. GNU General Public License ... 7

1.5. Product Overview ... 8

1.6. Document Organization ... 8

1.7. Text Conventions .. 9

1.8. Related Documents ... 9

1.9. Document History .. 9

2. Controller Area Network .. 10

2.1. CAN version 2.0 specification .. 10

3. CAN Package Description .. 13

3.1. Hardware ... 13

3.2. Software ... 14

3.2.1. SocketCAN ... 14

3.2.2. Modules .. 15

3.2.3. CAN connections .. 15

4. CAN Package Setup ... 17

4.1. Modules loading ... 17

4.2. Modules removing ... 18

4.3. Library setup .. 18

5. Functionalities and APIs Summary ... 21

6. APIs Data Types and Structures ... 23

6.1. CAN_ERROR_CODE_E ... 23

6.2. CAN_CONNECTION_T ... 23

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 5 of 60

6.3. CAN_FRAME_T .. 23

6.4. CAN_SOFTWARE_FILTER_T .. 24

6.5. CAN_HARDWARE_MASK_T ... 24

6.6. CAN_HARDWARE_FILTERS_T .. 24

6.7. CAN_BIT_TIMINGS_T .. 25

6.8. CAN_CTRL_MODE_E ... 25

6.9. CAN_STATE_E ... 25

6.10. CAN_DEVICE_STATS_T .. 26

7. APIs Description .. 27

7.1. CAN_Enable() ... 27

7.2. CAN_Disable() .. 28

7.3. CAN_Open() .. 28

7.4. CAN_Close() ... 29

7.5. CAN_SetBitrate().. 30

7.6. CAN_GetBitrate() ... 31

7.7. CAN_SetTimings() .. 31

7.8. CAN_GetTimings().. 33

7.9. CAN_SetCtrlMode() .. 34

7.10. CAN_GetCtrlMode() .. 35

7.11. CAN_GetState() ... 36

7.12. CAN_Read() .. 37

7.13. CAN_Write() .. 38

7.14. CAN_CyclicSending() .. 39

7.15. CAN_ErrorSignaling() ... 41

7.16. CAN_LocalLoopback() .. 43

7.17. CAN_ReceiveOwnFrames() .. 44

7.18. CAN_SetHardwareFilters() .. 44

7.19. CAN_GetHardwareFilters() .. 48

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 6 of 60

7.20. CAN_AddSoftwareFilter() ... 50

7.21. CAN_DelSoftwareFilter() .. 51

7.22. CAN_SoftwareFiltersList() ... 53

7.23. CAN_SetContentFilter() .. 54

7.24. CAN_ReadChangedContent() ... 56

7.25. CAN_GetDeviceStats() .. 58

8. Acronyms and Abbreviations .. 60

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 7 of 60

1. Introduction

1.1. Scope
This user guide serves the following purpose:

• Introduces briefly the CAN specification
• Illustrates the CAN package that exports on Linux operative system the

main CAN features (such as CAN frames reading/writing on a CAN bus) and
to provide detailed examples in order to show the correct use of the APIs.

1.2. Audience
This User Guide is intended for software developers who develop applications on
the ARM processor of the module and need to use the GE863-PRO3 connected to a
CAN bus.

1.3. Contact Information, Support
Our aim is to make this guide as helpful as possible. Keep us informed of your
comments and suggestions for improvements.
For general contact, technical support, report documentation errors and to order
manuals, contact Telit Technical Support Center at:
TS-EMEA@telit.com or
http://www.telit.com/en/products/technical-support-center/contact.php
Telit appreciates feedback from the users of our information.

1.4. GNU General Public License
The CAN package code embedded into the module is licensed with the GNU General
Public License as follows:

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

mailto:TS-EMEA@telit.com�
http://www.telit.com/en/products/technical-support-center/contact.php�

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 8 of 60

Please refer to the following web page for the full text of the license:
http://git.denx.de/?p=u-
boot.git;a=blob;f=COPYING;h=f616ab96cc773d1719761d511a8649c9aa6eb473;hb=f4
eb54529bb3664c3a562e488b460fe075f79d67

1.5. Product Overview
The GE863-PRO3 is an innovation to the quad-band, RoHS compliant GE863 product
family which includes a powerful ARM9TM processor core exclusively dedicated to
customer applications. The concept of collocating a powerful processor core with
the GSM/GPRS engine allows developers to host their application directly. The PRO3
incorporates much of the necessary hardware for communicating microcontroller
solutions, including the critical element of memory, significant simplification of the
bill of material, vendor management, and logistics effort are achieved.

1.6. Document Organization
This manual contains the following chapters:

• “Chapter 1, Introduction” provides a scope for this manual, target audience,
technical contact information, and text conventions.

• “Chapter 2, Controller Area Network” introduces the CAN version 2.0
Specification.

• “Chapter 3, CAN Package Description” describes the CAN package with its
software architecture.

• “Chapter 4, CAN Package Setup” describes briefly how to load CAN modules
and import the CAN package APIs within a project.

• “Chapter 5, Functionalities and APIs Summary” provides a brief list and
description of the CAN package functionalities and APIs.

• “Chapter 6, APIs Data Types and Structures” provides a description of the
types used within the CAN package APIs library.

• “Chapter 7, APIs Description” provides a detailed description and examples
of the methods that implement the CAN package APIs library.

• “Chapter 8, Acronyms and Abbreviations” provides definition for all the
acronyms and abbreviations used in this guide.

How to Use
If you are new to this product, it is highly recommended to start by reading through
TelitGE863PRO3Linux_SW_UserGuide 1vv0300781 [4] and TelitGE863PRO3 Linux
Development Environment User Guide 1VV0300780 [1] manuals and this document

http://git.denx.de/?p=u-boot.git;a=blob;f=COPYING;h=f616ab96cc773d1719761d511a8649c9aa6eb473;hb=f4eb54529bb3664c3a562e488b460fe075f79d67�
http://git.denx.de/?p=u-boot.git;a=blob;f=COPYING;h=f616ab96cc773d1719761d511a8649c9aa6eb473;hb=f4eb54529bb3664c3a562e488b460fe075f79d67�
http://git.denx.de/?p=u-boot.git;a=blob;f=COPYING;h=f616ab96cc773d1719761d511a8649c9aa6eb473;hb=f4eb54529bb3664c3a562e488b460fe075f79d67�

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 9 of 60

in their entirety in order to understand the concepts and specific features provided
by the built in software of the GE863-PRO3.

1.7. Text Conventions
This section lists the paragraph and font styles used for the various types of
information presented in this user guide.

Format Content
Courier New Shell command examples, C code examples and types definition.

1.8. Related Documents
The following documents are related to this user guide:

1. TelitGE863PRO3 Development Environment User Guide 1vv0300775a
2. TelitGE863PRO3 EVK User Guide 1vv0300776
3. TelitGE863PRO3 Hardware User Guide 1vv0300773a
4. TelitGE863PRO3 Software User Guide
5. TelitGE863PRO3 Product Description 80285ST10036a
6. Atmel AT91SAM 9260 Summary Datasheet: 6221s.pdf on web page link:

 http://www.atmel.com/dyn/products/datasheets.asp?family_id=605
7. CAN Specification Version 2.0, Robert Bosch GmbH, 1991: can2spec.pdf on

web page link:
 www.semiconductors.bosch.de/pdf/can2spec.pdf

8. Stand-Alone CAN Controller With SPI Interface: 21801d.pdf on web page
link:
 ww1.microchip.com/downloads/en/DeviceDoc/21801d.pdf

All documentation can be downloaded from Telit’s official web site www.telit.com if
not otherwise indicated.

1.9. Document History
RReevviissiioonn DDaattee CChhaannggeess
ISSUE #0 2009-11-27 First revision

http://www.atmel.com/dyn/products/datasheets.asp?family_id=605�
http://www.semiconductors.bosch.de/pdf/can2spec.pdf�
http://ww1.microchip.com/downloads/en/DeviceDoc/21801d.pdf�
http://www.telit.com/�

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 10 of 60

2. Controller Area Network

The Controller Area Network (CAN) is a serial communications protocol which
efficiently supports distributed real-time control with a very high level of security.
Its domain of application ranges from high speed networks to low cost multiplex
wiring. In automotive electronics, engine control units, sensors, anti-skid-systems,
etc. are connected using CAN with bitrates up to 1 Mbit/s. At the same time it is cost
effective to build into vehicle body electronics, e.g. lamp clusters, electric windows
etc. to replace the wiring harness otherwise required.

2.1. CAN version 2.0 specification
Controller Area Network (CAN) was initially created by German automotive system
supplier Robert Bosch in the mid-1980s for automotive applications as a method for
enabling robust serial communication. The goal was to make automobiles more
reliable, safe and fuel-efficient while decreasing wiring harness weight and
complexity.
Since its inception, the CAN protocol has gained widespread popularity in industrial
automation and automotive/truck applications. Other markets where networked
solutions can bring attractive benefits like medical equipment, test equipment and
mobile machines are also starting to utilize the benefits of CAN.
Bosch published the CAN version 2.0 specification in 1991 [7]; CAN is also an
international standard: ISO 11898.
CAN version 2.0 Specification consists of two parts:

• Part A describing the CAN message format as it is defined in CAN version
1.2 Specification;

• Part B describing both standard and extended message formats.
In order to be compatible with this CAN version 2.0 Specification it is required that a
CAN implementation be compatible with either Part A or Part B.
CAN implementations that are designed according to part A and CAN
implementations that are designed according to part B can communicate with each
other as long as it is not made use of the extended format.

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 11 of 60

To achieve design transparency and implementation flexibility CAN has been
subdivided into different layers according to the ISO/OSI Reference Model:

• the Data Link Layer
o the Logical Link Control (LLC) sublayer
o the Medium Access Control (MAC) sublayer

• the Physical Layer

Figure 2.1

The scope of the LLC sublayer is

• to provide services for data transfer and for remote data request,
• to decide which messages received by the LLC sublayer are actually to be

accepted,
• to provide means for recovery management and overload notifications.

The scope of the MAC sublayer mainly is the transfer protocol, i.e. controlling the
Framing, performing Arbitration, Error Checking, Error Signalling and Fault
Confinement. Within the MAC sublayer it is decided whether the bus is free for

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 12 of 60

starting a new transmission or whether a reception is just starting. Also some
general features of the bit timing are regarded as part of the MAC sublayer.
The scope of the physical layer is the actual transfer of the bits between the
different nodes with respect to all electrical properties. Within one network the
physical layer, of course, has to be the same for all nodes. There may be, however,
much freedom in selecting a physical layer.
CAN version 2.0 Specification defines the MAC sublayer and a small part of the LLC
sublayer of the Data Link Layer and to describe the consequences of the CAN
protocol on the surrounding layers. ISO standard includes the Media Dependant
Interface definition such that all of the lower two layers are specified.
CAN does not have device addresses like the MAC addresses by Ethernet. The only
thing used for addressing is the CAN ID. Since all messages are broadcasted to the
whole CAN network, it is not possible to send a message only to one device.
The rest of the layers of the ISO/OSI protocol stack are left to be implemented by
the system software developer. Higher Layer Protocols (HLPs) are generally used
to implement the upper five layers of the OSI Reference Model.
HLPs are used to:

1. standardize startup procedures including bit rates used,
2. distribute addresses among participating nodes or types of messages,
3. determine the structure of the messages, and
4. provide system-level error handling routines.

The main features of CAN version 2.0 Specification are:
• Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
• message-based communication
• prioritization of messages
• guarantee of latency times
• configuration flexibility
• multicast reception with time synchronization
• system wide data consistency
• multimaster
• error detection and signaling
• automatic retransmission of corrupted messages as soon as the bus is idle

again
• distinction between temporary errors and permanent failures of nodes
• autonomous switching off of defect nodes

Further detailed information can be found in the document [7].

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 13 of 60

3. CAN Package Description

CAN Package is a software solution for Telit GE863-Pro3 that supports CAN version
2.0 Specification part B. This package is based on a CAN controller connected to
GE863-Pro3 by SPI port (Microchip MCP2515).

3.1. Hardware
The Microchip MCP2515 CAN controller shall be connected with GE863-PRO³
through SPI bus 1. CAN package needs one GE863-PRO³ GPIO as interrupt signal.
As default SPI chip select 0 and GPIO PA29 are selected. Different chip select
and/or GPIO can be selected when the driver module is loaded (see Section 4.1).

Figure 3.1

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 14 of 60

3.2. Software
Figure 3.2 shows software architecture of the CAN Package for GE863-Pro3:

• Linux OS SPI driver for MCP2515 CAN controller
• SocketCAN framework modules
• CAN Package APIs library
• User Application

CAN Package includes Linux controller driver, SocketCAN framework modules and
CAN APIs library. User applications use the functionalities provided by CAN APIs
library to manage CAN bus.

Figure 3.2

3.2.1. SocketCAN
SocketCAN is a set of open source CAN drivers and a networking stack contributed
by Volkswagen Research to the Linux kernel. Formerly it is known as Low Level CAN
Framework (LLCF).

 CAN
Software
 Package

SocketCAN netdevice
driver

SocketCAN core module

User Application

MCP2515 CAN
controller driver

SocketCAN protocol family

CAN_RAW
CAN_BCM

SocketCAN
virtual bus

KERNEL SPACE

USER SPACE

CAN APIs Library

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 15 of 60

Established CAN drivers are based on the model of character devices. Typically they
only allow sending to and receiving from the CAN controller. Most of the
implementations for this device class only allow a single process on the device
which means that all other processes are blocked in the meantime as known from
accessing a device via the serial interface. The SocketCAN concept on the other
hand uses the model of network devices, which allows multiple applications to
access to one CAN device simultaneously. Equally single applications are able to
access multiple CAN networks in parallel.
The SocketCAN concept introduces a new protocol family PF_CAN that coexists
with other protocol families like PF_INET for the Internet Protocol. The
communication with the CAN bus is done analogue to the use of the Internet
Protocol via Sockets. Fundamental components of SocketCAN are the network
device drivers for different CAN controllers and the implementation of the CAN
protocol family.
SocketCAN does not touch higher level protocols like CANopen or DeviceNet: these
HLPs can be put on top of one CAN socket.

3.2.2. Modules
CAN Package is made up of the following SocketCAN modules:

• can.ko (SocketCAN core module): allows to use the SocketCAN features;
• can-dev.ko (SocketCAN netdevice driver): manages controller driver like

network driver;
• mcp251x.ko (MCP2515 CAN controller driver): Linux OS SPI CAN

controller driver;
• can-raw.ko (CAN_RAW protocol): allows direct access (R/W) to the CAN

bus;
• can-bcm.ko (CAN_BCM protocol): provides data message filtering in cyclic

frames;
• vcan.ko (virtual CAN bus): provides a virtual CAN interface.

3.2.3. CAN connections
CAN package allows multiple connections to access at the same CAN device
simultaneously.

Figure 3.3

Connection 1

CAN
node …

Connection 2

Connection n

CAN
bus

SocketCAN
core

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 16 of 60

Communication between CAN connections and CAN node happens according to
following modes:

• When loopback hardware control mode is active, no frames are received or
sent on CAN bus. Every frame sent to CAN node is returned to every CAN
connection active in the same CAN node.

• When listen-only mode is active, no frames are sent on CAN bus, while the
CAN node is able to receive frame from CAN bus.

• When local loopback mode is active, all the CAN frames sent from a CAN
connection are looped back to the other CAN connections active on the same
CAN node.

• When own frame receiving is active, every CAN connection receives the
frame sent by itself.

• When error signaling is active, special error signaling frames are sent to the
other CAN connections active on the same CAN node. These special frames
are not sent on CAN bus.

These operating modes are not incompatible between themselves. For example,
when loopback hardware control mode and local loopback are active, if a CAN
connection sends a frame:

• the CAN connection that has sent this frame is able to receive it;
• the other CAN connections active in the same CAN node receive twice this

frame;
• this frame is not transmitted on CAN bus.

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 17 of 60

4. CAN Package Setup

4.1. Modules loading
In order to use CAN package features, can.ko module must be loaded by this shell
command:

modprobe can.ko

Once can.ko module has been loaded, controller driver can be loaded by typing can-
dev.ko and mcp251x.ko:

modprobe can-dev.ko
modprobe mcp251x.ko

When the controller is probed, a CAN interface is created with name “canx”, where
x is a positive integer (the first CAN interface is named “can0”). This network
interface can be shown by:

ifconfig -a

mcp251x.ko probing sets as default chip select 0 and GPIO PA29 respectively for SPI
bus 1 communication and interrupt signal. In order to change these settings, it is
possible to use optional cs and/or irq_gpio parameters:

modprobe mcp251x.ko cs=2 irq_gpio=90

GPIO pins are numbered from 0 to 95. The first 32 pins refer to the PIO A controller,
the second 32 pins refer to the PIO B controller and the others refer to the PIO C
controller. In the example chip select 2 and interrupt on PC26 are set.

If a virtual CAN device must be used instead of a physical controller, vcan.ko must
be loaded in place of mcp251x.ko:

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 18 of 60

modprobe vcan.ko

In this case, system is ready to create one virtual can interface called “vcan0” when
this will be enabled.

After SPI driver controller or virtual can bus is loaded, protocol modules must be
loaded:

modprobe can-raw.ko
modprobe can-bcm.ko

After loading these modules, user will be able to use CAN package features.

4.2. Modules removing
The following instructions remove CAN modules for the use of MCP2515 CAN
controller:

rmomod can-bcm
rmmod can-raw
rmmod mcp251x
rmmod can-dev
rmmod can

The following instructions remove CAN modules for the use of a virtual CAN device:

rmomod can-bcm
rmmod can-raw
rmmod vcan
rmmod can-dev
rmmod can

4.3. Library setup
In order to include or update the library version on your development environment,
user has to copy the header file and the library respectively into the
/opt/crosstools/telit/include/ and /opt/crosstools/telit/lib/ directories:

• Start the Linux console (Windows Start Menu  All Programs  Telit

Development Platform  Console).
• Copy the library typing

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 19 of 60

cp /mnt/windows/<PATH>/libCAN.a /opt/crosstools/telit/lib/
• Copy the header file typing

cp /mnt/windows/<PATH>/CANlib.h /opt/crosstools/telit/include/

where <PATH> is the windows folder where user has stored the new version of the
library files. For example (see Figure 4.1), if user stores them within C:\Temp, he
has to digit

cp /mnt/windows/Temp/libCAN.a /opt/crosstools/telit/lib/
and
cp /mnt/windows/Temp/CANlib.h /opt/crosstools/telit/include/

In order to link the CAN library in a project, in the development environment under
Project  Properties  C/C++ General  Path and symbols  Libraries user
has to click Add, insert the file Release/CAN and click OK (see Figure 4.2).

Figure 4.1

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 20 of 60

Figure 4.2

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 21 of 60

5. Functionalities and APIs Summary

CAN package provides to user applications also the following main functionalities:

Functionalities Notes

MCP2515 CAN controller supported See [8]
CAN ver 2.0 Specification part B supported See Chapter 2

CAN bus sharing CAN bus can be shared by different applications
in the same moment

CAN frames semantics
CAN package does not define semantics of CAN
frames. Semantics is only defined by user
applications

In the following table a summary of the APIs is shown.

Functionality Group APIs Notes

CAN bus access
CAN_Enable()

Enables CAN bus access on a real
or virtual controller

CAN_Disable() Disables CAN bus access on a real
or virtual controller

CAN connection
CAN_Open() Opens a connection with the CAN

node

CAN_Close()
Closes a connection with the CAN
node

CAN node settings

CAN_SetBitrate()
Sets CAN bus bitrate according CIA
recommendations

CAN_GetBitrate() Gets CAN bus actual bitrate

CAN_SetTimings()

Sets CAN node timings: time
quantum, propagation segment,
phase segments, synchronization
jump width

CAN_GetTimings()

Gets CAN node timings: time
quantum, propagation segment,
phase segments, synchronization
jump width

CAN node settings
CAN_SetCtrlMode()

Enables normal, hardware loopback
or listen-only CAN node control
mode

CAN_GetCtrlMode() Reads the CAN node actual control

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 22 of 60

mode (normal, hardware loopback
or listen-only)

CAN_GetState()
Reads the CAN node actual state
(active, bus warning, bus passive,
bus off, stopped)

CAN operations

CAN_Read()
Reads a CAN frame on a CAN
connection

CAN_Write()
Sends a CAN frame on a CAN
connection

CAN_CyclicSending() Sends a cyclic CAN frame on a CAN
connection

CAN_ErrorSignaling()
Enables or disables error states
signaling through CAN frames
reading on a CAN connection

CAN_LocalLoopback()
Enables or disables the receiving of
the CAN frame sent by other CAN
connections on the same CAN node

CAN_ReceiveOwnFrames()
Enables or disables the receiving of
the CAN frame sent by the same
CAN connection

CAN filtering

CAN_SetHardwareFilters() Sets hardware filters on a CAN node

CAN_GetHardwareFilters() Gets hardware filters on a CAN
node

CAN_AddSoftwareFilter()
Adds a new CAN ID software filter
on a CAN connection

CAN_DelSoftwareFilter()
Deletes a CAN ID software filter on
a CAN connection

CAN_SoftwareFiltersList() Shows the active software filters on
a CAN connection

CAN_SetContentFilter()
Enables or disables monitoring for
CAN data change according to a
frame mask

CAN filtering CAN_ReadChangedContent()
Reads a frame only when content
change is detected according to
CAN_SetContentFilter() settings

CAN statistics CAN_GetDeviceStats() Shows CAN controller statistics

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 23 of 60

6. APIs Data Types and Structures

6.1. CAN_ERROR_CODE_E
This type is an enum containing codes for all errors that may occur during CAN
operations. Each method described within chapter 7 returns an error code.

typedef enum
{
 CAN_OK,
 CAN_ERROR,
 CAN_UNKNOWN_IF,
 CAN_ALREADY_ENABLED_IF,

CAN_ALREADY_DISABLED_IF,
 CAN_DISABLED_IF,
 CAN_CONNECTION_ERROR,
 CAN_VIRTUAL_IF,
 CAN_BITRATE_ERROR,
 CAN_BIT_TIMINGS_ERROR,
 CAN_TYPE_ERROR,
 CAN_ERROR_SIGNAL,
 CAN_FILTER_ERROR,
 CAN_TOO_ENABLED_FILTERS,
 CAN_ALREADY_DEFINED_FILTER,
 CAN_NON_EXISTENT_FILTER,
 CAN_STOP_CYCLIC,
 CAN_TIMEOUT_EXPIRED
} CAN_ERROR_CODE_E;

6.2. CAN_CONNECTION_T
This struct contains the interface name of CAN node and the sockets implementing
CAN connection.

typedef struct CAN_CONNECTION_TAG
 {
 INT8 interface[6];
 INT32 rawSocket

INT32 bcmSocket;

} CAN_CONNECTION_T;

6.3. CAN_FRAME_T
This struct contains the CAN frame bit fields and its attributes (standard or
extended format, remote frame).

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 24 of 60

typedef struct CAN_FRAME_TAG
{
 UINT32 canId;
 UINT8 canDlc;
 UINT8 data[8]; /* data[0] indicates the most significant
byte */
 UINT8 attributes;
} CAN_FRAME_T;

6.4. CAN_SOFTWARE_FILTER_T
This struct contains the CAN software filter specification and attributes.

typedef struct CAN_SOFTWARE_FILTER_TAG
{
 UINT32 filterId;
 UINT32 maskId;
 UINT8 attributes;
} CAN_SOFTWARE_FILTER_T;

6.5. CAN_HARDWARE_MASK_T
This struct contains the CAN hardware filters specification and attributes with a
specified mask.

typedef struct CAN_HARDWARE_MASK_TAG
{
 UINT32 maskId;
 UINT16 maskData;
 UINT8 attributes;
 UINT32 filterId[CAN_MAX_HARDWARE_FILTERS_PER_MASK];
 UINT16 filterData[CAN_MAX_HARDWARE_FILTERS_PER_MASK];
} CAN_HARDWARE_MASK_T;

6.6. CAN_HARDWARE_FILTERS_T
This struct contains the CAN hardware filters specification and attributes as a set of
CAN_HARDWARE_MASK_T structs.

typedef struct CAN_HARDWARE_FILTERS_TAG
{
 CAN_HARDWARE_MASK_T mask[CAN_MAX_HARDWARE_MASKS];
} CAN_HARDWARE_FILTERS_T;

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 25 of 60

6.7. CAN_BIT_TIMINGS_T
This struct contains the CAN timing settings (time quantum, propagation and phase
segments, synchronization jump width, sample point mode, oscillator frequency).

typedef struct CAN_BIT_TIMINIGS_TAG
{
 UINT32 tq;
 UINT8 propSeg:4;
 UINT8 phaseSeg1:4;
 UINT8 phaseSeg2:4;
 UINT8 sjw:3;
 UINT8 sam3:1;
 UINT32 clock;
} CAN_BIT_TIMINGS_T;

6.8. CAN_CTRL_MODE_E
This type is an enum containing the hardware control mode supported by CAN
controller.

typedef enum
{
 CAN_NORMAL,
 CAN_LOOPBACK,
 CAN_LISTENONLY,
} CAN_CTRL_MODE_E;

6.9. CAN_STATE_E
This type is an enum containing the actual state of the CAN node.

typedef enum
{
 CAN_ACTIVE,
 CAN_BUS_WARNING,
 CAN_BUS_PASSIVE,
 CAN_BUS_OFF,
 CAN_STOPPED
} CAN_STATE_E;

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 26 of 60

6.10. CAN_DEVICE_STATS_T
This struct contains the statistics about the CAN device.

typedef struct CAN_DEVICE_STATS_TAG
 {
UINT8 errorWarning;
 UINT8 dataOverrun;
 UINT8 wakeUp;
 UINT8 busError;
 UINT8 errorPassive;
 UINT8 arbitrationLost;
 UINT8 restarts;
 UINT8 busErrorAtInit;
} CAN_DEVICE_STATS_T;

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 27 of 60

7. APIs Description

If the CAN library is integrated into the development environment (see Section 4.2),
in order to use the CAN library user has only to include the header file into his
application:

#include <CANlib.h>

7.1. CAN_Enable()
This function enables CAN bus access on a real or virtual controller. This function
must be always called before opening the first CAN connection.
On a virtual node, this function creates and enables one virtual CAN interface called
“vcan0”. This network interface can be shown by:

ifconfig -a

On a real controller, besides interface enabling (network interface “can0” is already
created by mcp251x.ko module loading), this function:

• sets default bitrate (125 kbps)
• sets default controller clock oscillator (16MHz)
• sets timings according CIA recommendations
• resets and starts the controller in normal mode
• hardware filters are reset in order that controller receives all the frames

Prototype
CAN_ERROR_CODE_E CAN_Enable(INT8 *interface)

Parameters
<interface> It’s the name of the CAN interface node to be enable. It can be both a
real device (hardware controller if the SPI device module has been loaded) and a
virtual one (if the virtual can device module has been loaded). Interface name is
defined during modules loading (see Section 4.1).

Return values
CAN_OK CAN interface has been successfully enabled
CAN_UNKNOWN_IF CAN interface name is wrong
CAN_ALREADY_ENABLED_IF CAN interface is already enabled
CAN_CONNECTION_ERROR CAN connection error
CAN_ERROR Unspecified error

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 28 of 60

Example

CAN_Enable (“can0”);

initializes the CAN interface “can0” to 125 kbps and starts the CAN controller

7.2. CAN_Disable()
This function disables CAN bus access on a real or virtual controller. This function
must be always called after closing of the active CAN connections.
On a real controller, besides disabling interface, this function stops the controller.

Prototype
CAN_ERROR_CODE_E CAN_Disable(INT8 *interface)

Parameters
<interface> It’s the name of the CAN interface node to be disable. It can be both a
real device (hardware controller if the SPI device module has been loaded) and a
virtual one (if the virtual can device module has been loaded). Interface name is
defined during modules loading (see Section 4.1).

Return values
CAN_OK CAN interface has been successfully disabled
CAN_UNKNOWN_IF CAN interface name is wrong
CAN_ALREADY_DISABLED_IF CAN interface is already disabled
CAN_ERROR Unspecified error

Example
CAN_Disable (“can0”);

disables the CAN interface “can0” and stops the CAN controller

7.3. CAN_Open()
This function opens a connection with a CAN interface (real or virtual). More than
one connection can be opened on the same CAN node.
This function sets the CAN_CONNECTION_T that must be passed in all the
functions performing activities on CAN bus. When a new connection is opened:

• local loopback is active;
• receiving of own frames is disabled;
• error signalling is disabled;
• no software filter is enabled and the frames are received only according the

enabled hardware filters;
• no content filter is enabled.

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 29 of 60

Prototype
CAN_ERROR_CODE_E CAN_Open(CAN_CONNECTION_T *can , INT8 *interface)

Parameters
<can> It’s the name of the CAN_CONNECTION_T to be opened.
<interface> It’s the name of the CAN interface on which a CAN connection must
be opened. It can be both a real device and a virtual one already enabled.

Return values
CAN_OK CAN connection has been successfully opened
CAN_UNKNOWN_IF CAN interface name is wrong
CAN_DISABLED_IF CAN interface is disabled
CAN_CONNECTION_ERROR CAN connection error
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;

CAN_Enable(“can0”);
CAN_Open (&can, “can0”);

creates a new connection on “can0” enabled interface

7.4. CAN_Close()
This function closes one specified connection with a CAN interface (real or virtual).
If the CAN interface is a real controller, this function does not stop it.

Prototype
CAN_ERROR_CODE_E CAN_Close(CAN_CONNECTION_T *can)

Parameters
<can> It’s the name of the CAN_CONNECTION_T to be closed.

Return values
CAN_OK CAN connection has been successfully closed
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_CONNECTION_ERROR CAN connection error
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;

…
/* open connection on an enabled interface */

…

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 30 of 60

/* CAN operations on CAN connection */

…
CAN_Close (&can);

closes a CAN connection previously opened.

7.5. CAN_SetBitrate()
This function sets bitrate on a real CAN interface already enabled. CAN controller
timings are set according to CIA recommendations. In order to set custom bit
timings, CAN_SetTimings() must be used.
Only the following bitrates are supported (according to CIA recommendations): 10,
20, 50, 125, 250, 500, 800 and 1000 kbps.
Bitrate settings are applied on all the CAN connections opened on the same CAN
interface.

Prototype
CAN_ERROR_CODE_E CAN_SetBitrate(CAN_CONNECTION_T *can, UINT32 bitrate,
 UINT32 clock)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which bitrate must be set.
<bitrate> Bitrate (bps) to be set.
<clock> Controller oscillator clock frequency (Hz).

Return values
CAN_OK CAN bus bitrate has been successfully set
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_VIRTUAL_IF CAN interface of the specified connection is virtual
CAN_BITRATE_ERROR Unable to set the specified bitrate
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
…
/* open connection on an enabled interface */
…
CAN_SetBitrate(&can, 500000, 16000000);

sets CAN bus bitrate at 500 kbps and CAN controller timings according to
CIA recommendations (oscillator clock frequency is 16 MHz)

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 31 of 60

7.6. CAN_GetBitrate()
This function reads the actual bitrate on a real CAN interface already enabled.
Bitrate is the same in all the CAN connections opened on the same CAN interface.

Prototype
CAN_ERROR_CODE_E CAN_GetBitrate(CAN_CONNECTION_T *can, UINT32 *bitrate)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which bitrate is read.
<bitrate> Pointer to the bitrate (bps) to be read.

Return values
CAN_OK CAN bus bitrate has been successfully read
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_VIRTUAL_IF CAN interface of the specified connection is virtual
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
UINT32 bitrate;
…
/* open connection on an enabled interface */
…
CAN_GetBitrate(&can, &bitrate);

reads the actual CAN bus baudrate and writes its value in bps in the bitrate
variable

7.7. CAN_SetTimings()
This function sets custom bit timings on a real CAN interface already enabled. Bit
timings to be set are:

• Time quantum (nsec);
• Propagation segment (from 1 to 8 time quanta), phase buffer segments 1

(from 1 to 8 time quanta) and 2 (from 2 to 8 time quanta);
• Synchronization jump width (from 1 to 4 time quanta);
• Oscillator frequency clock (Hz);
• Sampling point mode (the bus line can be sampled in the sample point once

or three times).
Bitrate is calculated by timing settings. It can be shown calling CAN_GetBitrate()
function.
Timing settings are applied on all the CAN connections opened on the same CAN
interface.

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 32 of 60

Prototype
CAN_ERROR_CODE_E CAN_SetTimings(CAN_CONNECTION_T *can,
CAN_BIT_TIMINGS_T *timings)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which bit timings must be set.
<timings> Pointer to the CAN_BIT_TIMINGS_T struct that contains the timings
to be set:

<timings->tq> time quantum (nsec)

 <timings->propSeg> propagation segment (from 1 to 8)
 <timings->phaseSeg1> phase buffer segment 1 (from 1 to 8)
 <timings->phaseSeg2> phase buffer segment 2 (from 2 to 8)
 <timings->sjw> synchronization jump width (from 1 to 4)
 <timings->sam3> three times sampling mode (0: disabled, 1: enabled)
 <timings->clock> oscillator frequency clock (Hz)

Return values
CAN_OK CAN bit timings have been successfully set
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_VIRTUAL_IF CAN interface of the specified connection is virtual
CAN_BIT_TIMINGS_ERROR Unable to set the specified bit timings
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
CAN_BIT_TIMINGS_T *bt;
UINT32 bitrate;

bt = (CAN_BIT_TIMINGS_T*)malloc(sizeof(CAN_BIT_TIMINGS_T));
bt->tq = 125;
bt->propSeg = 6;
bt->phaseSeg1 = 7;
bt->phaseSeg2 = 2;
bt->sjw = 1;
bt->sam3 = 1;
bt->clock = 16000000;
…
/* open connection on an enabled interface */
…
CAN_SetTimings(&can, bt);
CAN_GetBitrate(&can, &bitrate);
free(bt);

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 33 of 60

sets CAN bit timings with time quantum equal to 125 nsec, propagation segment
equal to 6 time quanta, phase buffer segment 1 equal to 7 time quanta, phase buffer
segment 2 equal to 2 time quanta, synchronization jump width equal to 1 time
quantum, bus line sampled three times at the sample point, oscillator clock
frequency equal to 16 MHz; bitrate has been successfully set at 500 kbps

7.8. CAN_GetTimings()
This function reads the actual bit timings on a real CAN interface already enabled.
Timing settings are the same on all the CAN connections opened on the same CAN
interface.

Prototype
CAN_ERROR_CODE_E CAN_GetTimings(CAN_CONNECTION_T *can,
CAN_BIT_TIMINGS_T *timings)

Parameters
<can> It’s the name of the CAN_CONNECTIO_T on which bit timings are read.
<timings> Pointer to the CAN_BIT_TIMINGS_T struct that contains the timings
to be read:

<timings->tq> time quantum (nsec)

 <timings->propSeg> propagation segment (from 1 to 8)
 <timings->phaseSeg1> phase buffer segment 1 (from 1 to 8)

 <timings->phaseSeg2> phase buffer segment 2 (from 2 to 8)
 <timings->sjw> synchronization jump width (from 1 to 4)
 <timings->sam3> three times sampling mode (0: disabled, 1: enabled)
 <timings->clock> oscillator frequency clock (Hz)

Return values
CAN_OK CAN bit timings have been successfully read
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_VIRTUAL_IF CAN interface of the specified connection is virtual
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
CAN_BIT_TIMINGS_T *bt;
UINT32 bitrate;

bitrate = 250000;
bt = (CAN_BIT_TIMINGS_T*)malloc(sizeof(CAN_BIT_TIMINGS_T));

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 34 of 60

…
/* open connection on an enabled interface */
…
CAN_SetBitrate(&can, bitrate, 16000000);
CAN_GetTimings(&can, bt);
free(bt);

reads CAN bit timings with bitrate set at 250 kbps. In this case bit timings are: time
quantum equal to 250 nsec, propagation segment equal to 6 time quanta, phase
buffer segment 1 equal to 7 time quanta, phase buffer segment 2 equal to 2 time
quanta, synchronization jump width equal to 1 time quantum, bus line sampled
three times at the sample point, oscillator clock frequency equal to 16 MHz.

7.9. CAN_SetCtrlMode()
This function enables normal, hardware loopback or listen-only mode on a real
CAN interface already enabled.
Loopback hardware control mode allows internal transmission of messages from
the transmit buffers to the receive buffers without actually transmitting messages
on the CAN bus. In this mode no frames are received or sent on CAN bus.
Listen-only mode is a silent mode, meaning no messages will be transmitted while
it is in this state but controller will be able to receive frames from CAN bus.
In normal mode, neither loopback nor listen-only mode is active. Normal mode is
active after a controller reset.
Control mode changing is applied on all the CAN connections opened on the same
CAN interface.

Prototype
CAN_ERROR_CODE_E CAN_SetCtrlMode(CAN_CONNECTION_T *can,
CAN_CTRL_MODE_E ctrlMode)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which control mode must be
set.
<ctrlMode> Control mode to be set:

CAN_NORMAL disables hardware loopback and listen-only modes

 CAN_LOOPBACK actives hardware loopback control mode

CAN_LISTENONLY actives listen-only control mode

Return values
CAN_OK CAN control mode has been successfully set
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 35 of 60

CAN_VIRTUAL_IF CAN interface of the specified connection is virtual
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
…
/* open connection on an enabled interface */
…
CAN_SetCtrlMode(&can, CAN_LOOPBACK);
/* CAN controller was in normal control mode
and now it is in hardware loopback mode*/
…
CAN_SetCtrlMode(&can, CAN_LISTENONLY);
/* CAN controller is in listen-only mode */
…
CAN_SetCtrlMode(&can, CAN_NORMAL);
/* CAN controller is in normal control mode */

changes CAN controller control mode

7.10. CAN_GetCtrlMode()
This function reads the actual control mode on a real CAN interface already
enabled.
Control mode is the same on all the CAN connections opened on the same CAN
interface.

Prototype
CAN_ERROR_CODE_E CAN_GetCtrlMode(CAN_CONNECTION_T *can,
 CAN_CTRL_MODE_E *ctrlMode)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which control mode is read.
<ctrlMode> Pointer to control mode to be read:

CAN_NORMAL hardware loopback and listen-only are not active

 CAN_LOOPBACK hardware loopback control mode
CAN_LISTENONLY active listen-only control mode

Return values
CAN_OK CAN operating mode has been successfully read
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_VIRTUAL_IF CAN interface of the specified connection is virtual
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 36 of 60

CAN_CTRL_MODE_E ctrlMode;
…
/* open connection on an enabled interface */
CAN_GetCtrlMode(&can, &ctrlMode);

reads the actual CAN controller control mode and stores its value in
ctrlMode variable

7.11. CAN_GetState()
This function reads the actual state of a real CAN interface already enabled. CAN
node state can be active, bus warning, bus passive, bus off or stopped.
State is the same on all the CAN connections opened on the same CAN interface.

Prototype
CAN_ERROR_CODE_E CAN_GetState(CAN_CONNECTION_T *can,
CAN_STATE_E *state)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which state is read.
<state> Pointer to the state to be read:

CAN_ACTIVE CAN node is error active
CAN_BUS_WARNING CAN node is bus warning
CAN_BUS_PASSIVE CAN node is error passive
CAN_BUS_OFF CAN node is bus off
CAN_BUS_STOPPED CAN node is stopped

Return values
CAN_OK CAN state has been successfully read
CAN_CONNECTION_ERROR CAN connection error

CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_VIRTUAL_IF CAN interface of the specified connection is virtual
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
CAN_STATE_E state;
…
/* open connection on an enabled interface */
…
CAN_GetState(&can, &state);

reads CAN node state and stores its value in state variable

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 37 of 60

7.12. CAN_Read()
This function reads a frame from a CAN connection, according to filters and error
signalling settings.
This function returns when a frame is received or when timeout expires. If timeout
is equal to 0, this function waits until it reads a CAN frame.
Real and virtual CAN interfaces are supported.
Standard and extended format, remote and error signalling frames are supported.

Prototype
CAN_ERROR_CODE_E CAN_Read(CAN_CONNECTION_T *can,
CAN_FRAME_T *frame, UINT32 timeout)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which frame is read.
<frame> Pointer to the frame to be read:

<frame->canId> frame ID: low level 11-bits for standard frames and

low level 29-bits for extended frames must be taken
into consideration

 <frame->canDlc> frame data length code (from 0 to 8)

<frame->data> frame data field: low level canDlc-bytes must be taken
into consideration

 <frame->attributes> frame type; CAN attributes are:

 CAN_STANDARD_FRAME standard frame format

CAN_EXTENDED_FRAME extended frame format
CAN_DATA_FRAME data frame
CAN_REMOTE_FRAME remote frame
CAN_ERROR_FRAME error signaling frame

 <timeout> Timeout in msec

Return values
CAN_OK CAN data or request frame has been successfully read
CAN_TIMEOUT_EXPIRED Timeout is expired
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_TYPE_ERROR CAN frame type error
CAN_ERROR_SIGNAL Error signaling frame has been received (see Section 7.16)
CAN_ERROR Unspecified error

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 38 of 60

Example
CAN_CONNECTION_T can;
CAN_FRAME_T *frame;
CAN_ERROR_CODE_E code;
int i;

frame = (CAN_FRAME_T *)malloc(sizeof(CAN_FRAME_T));
…
/* open connection on an enabled interface */
code = CAN_Read(&can, frame, 0);
if (code == CAN_OK) {
 if (frame->attributes & CAN_DATA_FRAME) {
 if (frame->attributes & CAN_STANDARD_FRAME)
 printf(“\nCAN ID = %x”, frame->canId & 0x7FF);
 else
 printf(“\nCAN ID = %x”, frame->canId & 0x1FFFFF);
 printf(“\nCAN DLC = %d”, frame->canDlc);

 for(i=0; i<frame->canDlc; i++)
 printf(“\nCAN data[%d] = %x”, i, frame->data[i]);
 }
}
free(frame);

waits and reads a CAN frame

7.13. CAN_Write()
This function writes a frame into a CAN connection.
Real and virtual CAN interfaces are supported.
Standard and extended format and remote frames are supported.

Prototype
CAN_ERROR_CODE_E CAN_Write(CAN_CONNECTION_T *can,
CAN_FRAME_T *frame)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which frame must be written.
<frame> Pointer to the frame to be written:

<frame -> canId> frame ID: low level 11-bits for standard frames and

low level 29-bits for extended frames are taken into
consideration

 <frame -> canDlc> frame data length code (from 0 to 8)

<frame -> data> frame data field: low level canDlc-bytes are taken into
consideration

 <frame -> attributes> frame type; CAN attributes masks are:

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 39 of 60

CAN_STANDARD_FRAME standard frame format
CAN_EXTENDED_FRAME extended frame format
CAN_DATA_FRAME data frame
CAN_REMOTE_FRAME remote frame

Return values
CAN_OK CAN data or request frame has been successfully written
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_TYPE_ERROR CAN frame type error
CAN_ERROR Unspecified error
Example
CAN_CONNECTION_T can;
CAN_FRAME_T *frame;

frame = (CAN_FRAME_T *)malloc(sizeof(CAN_FRAME_T));

frame -> attributes = CAN_EXTENDED_FRAME | CAN_DATA_FRAME;
frame -> canId = 0x65263;
frame -> canDlc = 4;
frame -> data[0] = 0x45;
frame -> data[1] = 0x42;
frame -> data[2] = 0x25;
frame -> data[3] = 0xe5;
…
/* open connection on an enabled interface */
…
CAN_Write(&can, frame);
free(frame);

sends a CAN frame

7.14. CAN_CyclicSending()
This function manages cyclic sending of a frame on a CAN connection.
Cyclic sending is specified by a frame (format, data length, data bytes) and by a
period.
This function allows to:

• start a new cyclic sending of a frame with the specified period
• modify the content of a frame that is cyclically sent, specifying the same

frame format and ID and different data length or data bytes
• modify the period of a frame that is cyclically sent
• stop a cyclic sending of a frame, specifying only the same format and ID.

Real and virtual CAN interfaces are supported.
Standard and extended format and remote frames are supported.

Prototype

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 40 of 60

CAN_ERROR_CODE_E CAN_CyclicSending(CAN_CONNECTION_T *can,
CAN_FRAME_T *frame, UINT32 timePeriod)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which frame must be sent.
<frame> Pointer to the frame to be cyclically sent:

<frame -> canId> frame ID (low level 11-bits for standard frames and

low level 29-bits for extended frames must be taken
into consideration)

 <frame -> canDlc> frame data length code (from 0 to 8)

<frame -> data> frame data field (low level canDlc-bytes must be taken
into consideration)

 <frame -> attributes> frame type; CAN attributes masks are:

 CAN_STANDARD_FRAME standard frame format

CAN_EXTENDED_FRAME extended frame format
CAN_DATA_FRAME data frame
CAN_REMOTE_FRAME remote frame

<timePeriod> Frame is sent every timePeriod msec; if it is zero, cyclic sending is
stopped.

Return values
CAN_OK CAN frame cyclic sending has been successfully started
CAN_STOP_CYCLIC CAN frame cyclic sending has been successfully stopped
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_TYPE_ERROR CAN type error
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
CAN_FRAME_T *frame;

frame = (CAN_FRAME_T *)malloc(sizeof(CAN_FRAME_T));

frame -> attributes = CAN_EXTENDED_FRAME | CAN_DATA_FRAME;
frame -> canId = 0x65263;

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 41 of 60

frame -> canDlc = 3;
frame -> data[0] = 0x45;
frame -> data[1] = 0x42;
frame -> data[2] = 0x25;
…
/* open connection on an enabled interface */
…
CAN_CyclicSending(&can, frame, 1250);
…
/* other CAN operations */
…
frame -> data[0] = 0x41;
frame -> data[1] = 0x40;
frame -> data[2] = 0x25;

CAN_CyclicSending(&can, frame, 1250);
…
/* other CAN operations */
…
CAN_CyclicSending(&can, frame, 0);
free(frame);

 sends a frame every 1250 msec, modifies its content and stops this cyclic
sending

7.15. CAN_ErrorSignaling()
This function enables or disables error signalling on a specified CAN connection on
a real CAN interface.
When error signalling is enabled, CAN_Read() is able to receive special frames with
controller error state. These frames are sent by SocketCAN core and are not
transmitted on the CAN bus. They have the following fields:
<frame -> canId> frame ID of a standard frame; error conditions are indicated
by these masks:
CAN_ERROR_TX_TIMEOUT 0x00000001U TX timeout
CAN_ERROR_LOSTARB 0x00000002U Lost arbitration
CAN_ERROR_CRTL 0x00000004U Controller problems
CAN_ERROR_BUSOFF 0x00000040U Bus off
CAN_ERROR_BUSERROR 0x00000080U Bus error

<frame -> canDlc> frame data length code: it is always equal to 8
<frame -> data> frame data field; reaching of a CAN controller error status is
indicated by these masks applied for frame -> data[1] (only if frame -> canId is
equal to CAN_ERROR_CRTL):
CAN_ERROR_CRTL_RX_OVERFLOW 0x01 RX buffer overflow

CAN_ERROR_CRTL_RX_WARNING 0x04 Warning level for RX errors
CAN_ERROR_CRTL_TX_WARNING 0x08 Warning level for TX errors
CAN_ERROR_CRTL_RX_PASSIVE 0x10 Error passive status RX
CAN_ERROR_CRTL_TX_PASSIVE 0x20 Error passive status TX

<frame -> attributes> frame type; it is always equal to:
 CAN_STANDARD_FRAME | CAN_ERROR_FRAME

When CAN connection is open, error signalling is disabled as default.

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 42 of 60

Prototype
CAN_ERROR_CODE_E CAN_ErrorSignaling(CAN_CONNECTION_T *can,
BOOLEAN enable)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which error signaling must be
enabled/disabled.
<enable> Enable/disable flag:

TRUE error signaling is enabled

 FALSE error signaling is disabled

Return values
CAN_OK CAN error signaling has been successfully enabled / disabled
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_VIRTUAL_IF CAN interface of the specified connection is virtual
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
CAN_FRAME_T *frame;
CAN_ERROR_CODE_E code;
frame = (CAN_FRAME_T *)malloc(sizeof(CAN_FRAME_T));
…
/* open connection on an enabled interface */
…
CAN_ErrorSignaling(&can, TRUE);
…
code = CAN_Read(&can, frame, 0);
if (code == CAN_ERROR_SIGNAL) {
if (frame->canId & CAN_ERROR_TX_TIMEOUT)
printf("\nTX timeout\n");
if (frame->canId & CAN_ERROR_LOSTARB)
printf("\nLost arbitration\n");
if (frame->canId & CAN_ERROR_BUSOFF)
printf("\nBus off\n");
if (frame->canId & CAN_ERROR_BUSERROR)
 printf("\nBus error\n");
if (frame->canId & CAN_ERROR_CRTL) {
 printf("\nController error:");

if (frame->data[1] & CAN_ERROR_CRTL_RX_OVERFLOW)
 printf("RX buffer overflow\n");
if (frame->data[1] & CAN_ERROR_CRTL_RX_WARNING)
 printf("Reached warning level for RX errors\n");
if (frame->data[1] & CAN_ERROR_CRTL_TX_WARNING)
 printf("Reached warning level for TX errors\n");
if (frame->data[1] & CAN_ERROR_CRTL_RX_PASSIVE)
 printf("Reached error passive status RX\n");

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 43 of 60

if (frame->data[1] & CAN_ERROR_CRTL_TX_PASSIVE)
 printf("Reached error passive status TX\n");
 }
}
free(frame);

enables and shows error signaling

7.16. CAN_LocalLoopback()
This function enables or disables local loopback on CAN connections on the same
CAN interface (real or virtual).
When local loopback is enabled on a CAN connection, all the CAN frames sent from
this connection are looped back to the other CAN connections active on the same
interface.
When CAN connection is open, local loopback is enabled as default.

Prototype
CAN_ERROR_CODE_E CAN_LocalLoopback(CAN_CONNECTION_T *can,
BOOLEAN enable)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which local loopback must be
enabled/disabled.
<enable> Enable/disable flag:

TRUE local loopback is enabled

 FALSE local loopback is disabled

Return values
CAN_OK CAN local loopback has been successfully enabled / disabled
CAN_CONNECTION_ERROR CAN connection error

CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
…
/* open connection on an enabled interface */
…
CAN_LocalLoopback(&can, TRUE);

enables local loopback

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 44 of 60

7.17. CAN_ReceiveOwnFrames()
This function enables or disables receiving of the frames sent by the same CAN
connection on a CAN interface (real or virtual).
When CAN connection is open, receiving of own frames is disabled as default.

Prototype
CAN_ERROR_CODE_E CAN_ReceiveOwnFrames(CAN_CONNECTION_T *can,
BOOLEAN enable)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which receiving of own frames
must be enabled/disabled.
<enable> Enable/disable flag:

TRUE receiving of own frames is enabled

 FALSE receiving of own frames is disabled

Return values
CAN_OK Receiving of own frames has been successfully enabled / disabled
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
…
/* open connection on an enabled interface */
…
CAN_ReceiveOwnFrames(&can, TRUE);

enables receiving of own frames

7.18. CAN_SetHardwareFilters()
This function defines and enables all the hardware CAN filters on a real CAN
interface already enabled. CAN controller is able to receive from CAN bus only
when the frame matches with the filters.
Every CAN hardware filter is defined by a maskId (used to determine which bits in
the CAN ID are examined with the filters), by a filterId and by the format frame
(standard or extended). A filter matches when:

(<format of the received frame> == <format of the filter>) &&
(<CAN ID of the received frame> & maskId == (filterId & maskId))

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 45 of 60

This function also supports filtering on high order 16-bits on data in standard
format messages (CAN data byte filtering), in order to extend CAN ID hardware
filtering. In this case, every filter is defined also by a maskData and a filterData. A
filter matches when:

(<format of the received frame> == <format of the filter>) &&
 (<CAN ID of the received frame> & maskId == filterId & maskId) &&

(<high order 16-bits on CAN data of the received frame> & maskData == filterData &
maskData)

When frame has data length equal to 0, maskData is not applied; when frame has
data length equal to 1, maskData is applied only for its most significant byte.

MCP2515 CAN controller supports two masks with respectively two and four filters;
every mask defines one filter type (standard or extended frame format and data
byte filtering).
Hardware filters for standard frames have effect only for standard frames, and vice
versa.
All the frames from CAN bus are received if controller has a maskId equal to 0 with
standard filter type and the the other maskId equal to 0 with extended filter type
(see Example 2).
When a CAN node is enabled through CAN_Enable() function, hardware filters are
reset and all two filter masks have maskId equal to 0, the first one with standard
filter type and the second one with extended filter type (all the frames are received).
In order to enable one hardware filter ‘A’, controller must have all the filters equal
to ‘A’ (all the two filter masks must be defined, see Example 3).
Hardware filters are enabled on all the CAN connections opened on the same CAN.

Prototype
CAN_ERROR_CODE_E CAN_SetHardwareFilters(CAN_CONNECTION_T *can,
CAN_HARDWARE_FILTERS_T *filters)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which filters are enabled.
<filters> Pointer to the filters to be added:

 <filters -> mask> indicates one filter mask

<filters -> mask[i].maskID> ID mask number i: low level 11-bits for

standard frames and low level 29-bits for
extended frames are taken into consideration;
if maskID is 0, filter is disabled

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 46 of 60

<filters -> mask[i].maskData> data mask number i: it is taken into
consideration only if CAN data byte filtering is
enabled; if maskData is 0, filter is disabled

<filters -> mask[i].attributes> filter type of the mask number i; filter

attributes can be:

CAN_STANDARD_FRAME standard frame format
CAN_EXTENDED_FRAME extended frame format
CAN_DATABYTE_FILTER CAN data byte filtering enabled (only for standard
frame filter)

<filters -> mask[i].filterId[j]>ID filter number j of the mask number i: low
level 11-bits for standard frames and low
level 29-bits for extended frames are taken
into consideration

<filters -> mask[i].filterData[j]> data filter number j of the mask

number i: it is taken into consideration only if
CAN data byte filtering is enabled

Return values
CAN_OK CAN hardware filters have been successfully applied
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_VIRTUAL_IF CAN interface of the specified connection is virtual
CAN_FILTER_ERROR Filter type error
CAN_ERROR Unspecified error

Example 1
CAN_CONNECTION_T can;
CAN_HARDWARE_FILTERS_T *filters;
CAN_FRAME_T *frame;

filters = (CAN_HARDWARE_FILTERS_T *)malloc(sizeof(CAN_HARDWARE_FILTERS_T));

filters->mask[0].attributes = CAN_STANDARD_FRAME | CAN_DATABYTE_FILTER;
filters->mask[0].maskId = 0x0F8;
filters->mask[0].maskData = 0xF0FF;
filters->mask[0].filterId[0] = 0x123;
filters->mask[0].filterId[1] = 0x124;
filters->mask[0].filterData[0] = 0xAABB;
filters->mask[0].filterData[1] = 0x67ABCD;

filters->mask[1].attributes = CAN_EXTENDED_FRAME;
filters->mask[1].maskId = 0x700;

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 47 of 60

filters->mask[1].filterId[0] = 0x187;
filters->mask[1].filterId[1] = 0x412;
filters->mask[1].filterId[2] = 0x412;
filters->mask[1].filterId[3] = 0x412;
…
/* open connection on an enabled interface */
…
CAN_SetHardwareFilters(&can, filters);
…
frame = (CAN_FRAME_T *)malloc(sizeof(CAN_FRAME_T));
CAN_Read(&can, frame, 0);
…
free(filters);
free(frame);
defines and enables four hardware filters (a frame is received from CAN bus
if it matches with at least one filter):
the first one accepts frames if
(frame -> attributes & CAN_STANDARD_FRAME) &&
(frame -> canId & 0x0F8 == 0x123 & 0x0F8) &&
(frame -> data[0] & 0xF0 == 0xAA & 0xF0) &&
(frame -> data[1] & 0xFF == 0xBB & 0xFF)
the second one accepts frames if
(frame -> attributes & CAN_STANDARD_FRAME) &&
(frame -> canId & 0x0F8 == 0x124 & 0x0F8) &&
(frame -> data[0] & 0xF0 == 0xAB & 0xF0) &&
(frame -> data[1] & 0xFF == 0xCD & 0xFF)

the third one accepts frame if
(frame -> attributes & CAN_EXTENDED_FRAME) &&
(frame -> canId & 0x700 == 0x187 & 0x700)
the fourth one accepts frame if
(frame -> attributes & CAN_EXTENDED_FRAME) &&
(frame -> canId & 0x700 == 0x412 & 0x700)

Example 2
CAN_CONNECTION_T can;
CAN_HARDWARE_FILTERS_T *filters;
CAN_FRAME_T *frame;

filters = (CAN_HARDWARE_FILTERS_T *)malloc(sizeof(CAN_HARDWARE_FILTERS_T));

filters->mask[0].attributes = CAN_STANDARD_FRAME;
filters->mask[0].maskId = 0x0;

filters->mask[1].attributes = CAN_EXTENDED_FRAME;
filters->mask[1].maskId = 0x0;
…
/* open connection on an enabled interface */
…
CAN_SetHardwareFilters(&can, filters);
…
frame = (CAN_FRAME_T *)malloc(sizeof(CAN_FRAME_T));
CAN_Read(&can, frame, 0);
…
free(filters);
free(frame);

All the frames (standard or extended) from CAN bus are received

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 48 of 60

Example 3
CAN_CONNECTION_T can;
CAN_HARDWARE_FILTERS_T *filters;
CAN_FRAME_T *frame;

filters = (CAN_HARDWARE_FILTERS_T *)malloc(sizeof(CAN_HARDWARE_FILTERS_T));

filters->mask[0].attributes = CAN_STANDARD_FRAME;
filters->mask[0].maskId = 0x0F8;
filters->mask[0].filterId[0] = 0x123;
filters->mask[0].filterId[1] = 0x123;

filters->mask[1].attributes = CAN_STANDARD_FRAME;
filters->mask[1].maskId = 0x0F8;
filters->mask[1].filterId[0] = 0x123;
filters->mask[1].filterId[1] = 0x123;
filters->mask[1].filterId[2] = 0x123;
filters->mask[1].filterId[3] = 0x123;
…
/* open connection on an enabled interface */
…
CAN_SetHardwareFilters(&can, filters);
…
frame = (CAN_FRAME_T *)malloc(sizeof(CAN_FRAME_T));
CAN_Read(&can, frame, 0);
…
free(filters);
free(frame);

defines and enables one hardware filters; a frame is received from CAN bus
if:
(frame -> attributes & CAN_STANDARD_FRAME) &&
(frame -> canId & 0x0F8 == 0x123 & 0x0F8)

7.19. CAN_GetHardwareFilters()
This function reads the active hardware CAN filters on a real CAN interface already
enabled.

When a CAN node is enabled through CAN_Enable() function, hardware filters are
reset and CAN_GetHardwareFilters() returns an hardware filters structure with all
two filter masks equal to 0, the first one with standard filter type and the second
one with extended filter type (all the frames are received)
Hardware filters are the same in all the CAN connections opened on the same CAN.

Prototype
CAN_ERROR_CODE_E CAN_GetHardwareFilters(CAN_CONNECTION_T *can,
CAN_HARDWARE_FILTERS_T *filters)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which active filters are read.
<filters> Pointer to the active filters to be read:

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 49 of 60

 <filters -> mask> indicates one filter mask

<filters -> mask[i].maskID> ID mask number i: low level 11-bits for

standard frames and low level 29-bits for
extended frames are taken into consideration;
if maskID is 0, filter is disabled

<filters -> mask[i].maskData> data mask number i: it is taken into

consideration only if CAN data byte filtering is
enabled; if maskData is 0, filter is disabled

<filters -> mask[i].attributes> filter type of the mask number i; filter

attributes can be:

CAN_STANDARD_FRAME standard frame format
CAN_EXTENDED_FRAME extended frame format
CAN_DATABYTE_FILTER CAN data byte filtering enabled (only for

standard frame filter)

<filters -> mask[i].filterId[j]>ID filter number j of the mask number i: low
level 11-bits for standard frames and low
level 29-bits for extended frames are taken
into consideration

<filters -> mask[i].filterData[j]> data filter number j of the mask

number i: it is taken into consideration only if
CAN data byte filtering is enabled

Return values
CAN_OK CAN hardware filters have been successfully read
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_VIRTUAL_IF CAN interface of the specified connection is virtual
CAN_FILTER_ERROR Filter type error
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
CAN_HARDWARE_FILTERS_T *filters;
CAN_FRAME_T *frame;

filters = (CAN_HARDWARE_FILTERS_T *)malloc(sizeof(CAN_HARDWARE_FILTERS_T));
…
/* open connection on an enabled interface */
…
CAN_GetHardwareFilters(&can, filters);

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 50 of 60

free(filters);

 reads the active hardware filters

7.20. CAN_AddSoftwareFilter()
This function adds and enables a software filter on a specific CAN connection of a
real or virtual CAN interface.
Software filter is defined by a maskId (used to determine which bits in the CAN ID
are examined with the filters), by a filterId and by the format frame (standard or
extended). A software filter for standard frame is applied also to extended frames,
but not vice versa.
A filter for standard frames matches when:

 <CAN ID of the received frame> & maskId == filterId & maskId

A filter for extended frames matches when:

(<format of the received frame> == CAN_EXTENDED_FRAME) &&
 (<CAN ID of the received frame> & maskId == filterId & maskId)

If a frame matches with n software filters, it is received n times.
If no software filter is defined, all the frames are read (default condition on CAN
connection opening). It is possible to define up to 30 software filters.

Prototype
CAN_ERROR_CODE_E CAN_AddSoftwareFilter(CAN_CONNECTION_T *can,
CAN_SOFTWARE_FILTER_T *filter)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which filter is enabled.
<filter> Pointer to the filter to be added:

<filter -> filterId> ID filter: low level 11-bits for standard frames and low

level 29-bits for extended frames are taken into
consideration

<filter -> maskId> ID mask: low level 11-bits for standard frames and low

level 29-bits for extended frames are taken into
consideration

 <filter -> attributes> filter type; filter attributes can be:

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 51 of 60

CAN_STANDARD_FRAME standard frame format
CAN_EXTENDED_FRAME extended frame format

Return values
CAN_OK CAN filter has been successfully applied
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_FILTER_ERROR Filter type error
CAN_TOO_ENABLES_FILTERS Too many filters have been enabled
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
CAN_FILTER_T *filter1, *filter2;
CAN_FRAME_T *frame;

filter1 = (CAN_SOFTWARE_FILTER_T *)malloc(sizeof(CAN_SOFTWARE_FILTER_T));
filter1 -> attributes = CAN_EXTENDED_FRAME;
filter1 -> maskId = 0xF0FF;
filter1 -> filterId = 0x5A53;

filter2 = (CAN_SOFTWARE_FILTER_T *)malloc(sizeof(CAN_SOFTWARE_FILTER_T));
filter2 -> attributes = CAN_STANDARD_FRAME;
filter2 -> maskId = 0x70F;
filter2 -> filterId = 0x153;

frame = (CAN_FRAME_T *)malloc(sizeof(CAN_FRAME_T));
…
/* open connection on an enabled interface */
…
CAN_AddSoftwareFilter(&can, filter1);
CAN_AddSoftwareFilter(&can, filter2);
CAN_Read(&can, frame, 0);
…
free(filter1);
free(filter2);
free(frame);

enables two software filters (a frame is read n times if it matches with n software
filters):

1. the first one accepts a frame if
(frame -> attributes & CAN_EXTENDED_FRAME) &&
(frame -> canId & 0xF0FF == 0x5A53 & 0xF0FF) &&

2. the second one accepts frames if
frame -> canId & 0x70F == 0x153 & 0x70F

7.21. CAN_DelSoftwareFilter()
This function deletes a software filter previously added and enabled on a specific
CAN connection of a real or virtual CAN interface.

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 52 of 60

Prototype
CAN_ERROR_CODE_E CAN_DelSoftwareFilter(CAN_CONNECTION_T *can,
CAN_SOFTWARE_FILTER_T *filter)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which filter must be deleted.
<filter> Pointer to the filter to be deleted:

<filter -> filterid> ID filter: low level 11-bits for standard frames and low

level 29-bits for extended frames are taken into
consideration

<filter -> maskId> ID mask: low level 11-bits for standard frames and low

level 29-bits for extended frames are taken into
consideration

 <filter -> attributes> filter type; filter attributes can be:

CAN_STANDARD_FRAME standard frame format
CAN_EXTENDED_FRAME extended frame format

Return values
CAN_OK CAN filter has been successfully deleted
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_NON_EXISTENT_FILTER Filter not previously added
CAN_FILTER_ERROR Filter type error
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
CAN_FILTER_T *filter;
CAN_FRAME_T *frame;

filter = (CAN_SOFTWARE_FILTER_T *)malloc(sizeof(CAN_SOFTWARE_FILTER_T));
filter -> attributes = CAN_EXTENDED_FRAME;
filter -> maskId = 0xF00F;
filter -> filterId = 0x5A53;

frame = (CAN_FRAME_T *)malloc(sizeof(CAN_FRAME_T));
…
/* open connection on an enabled interface */
…
CAN_AddFilter(&can, filter);
…
CAN_Read(&can, frame, 0);
…
CAN_DelFilter(&can, filter);

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 53 of 60

…
CAN_Read(&can, frame, 0);
…
free(filter);
free(frame);

defines, adds and delete a software CAN filter: in the first CAN_Read() filter is
active, in the second CAN_Read() filter is not considered.

7.22. CAN_SoftwareFiltersList()
This function reads the added and enabled software CAN filters on a specific CAN
connection of a real or virtual CAN interface.
If filter list is NULL, this function returns only the number of the enabled filters.

Prototype
CAN_ERROR_CODE_E CAN_SoftwareFiltersList(CAN_CONNECTION_T *can,
CAN_SOFTWARE_FILTER_T **filters, UINT16 *number)

Parameters
<can> It’s the name of the CAN_CONNECTION_T about which filters are read.
<filters> Pointer to the filters list to be shown:

<*filter -> filterId> ID filter: low level 11-bits for standard frames and low

level 29-bits for extended frames are taken into
consideration

<*filter -> maskId> ID mask: low level 11-bits for standard frames and low

level 29-bits for extended frames are taken into
consideration

 <*filter -> attributes> filter type; filter attributes can be:

CAN_STANDARD_FRAME standard frame format
CAN_EXTENDED_FRAME extended frame format

<*number > number of enabled filters

Return values
CAN_OK No error
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_ERROR Unspecified error

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 54 of 60

Example
CAN_CONNECTION_T can;
CAN_SOFTWARE_FILTER_T *filter;
CAN_SOFTWARE_FILTER_T **filtersList;
int activeFilters;
int i = 0;

/* filter definition */
 …
/* open connection on an enabled interface */
…
CAN_AddSoftwareFilter(&can, filter);
…
CAN_SoftwareFiltersList(&can, NULL, &activeFilters);

filtersList = (CAN_SOFTWARE_FILTER_T **)malloc(sizeof(CAN_SOFTWARE_FILTER_T
*) * activeFilters);

for(i=0; i<activeFilters;i++)
filtersList[i] = (CAN_SOFTWARE_FILTER_T *)
malloc(sizeof(CAN_SOFTWARE_FILTER_T));

CAN_SoftwareFiltersList(&can, filtersList, &activeFilters);

for(i=0; i<activeFilters;i++)
printf(“\nsoftware filter %d: maskId %x, filterId %x\n”, i, filtersList[i]
-> maskId, filtersList[i] -> filterId);

for(i=0; i<activeFilters;i++)
 free(filtersList[i]);
free(filtersList);

shows active software filters

7.23. CAN_SetContentFilter()
This function enables or disables monitoring for content change according to a
frame mask on a specific CAN connection.
Frame mask indicates the type (standard or extended frame), CAN ID and data
mask.
CAN_ReadChangedContent() will read a frame only when content change is
detected according to active content filters.
Content is considered changed when the read frame (all the following conditions
must be verified):

• has the same type as one of the frame mask;
• has the same CAN ID as one of the frame mask;

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 55 of 60

• has a different CAN DLC or data field compared to the last received frame
with the same CAN ID (only the bits set to ‘1’ in data field frame mask are
considered)

It works on real or virtual CAN interface. Standard and extended format frames are
supported.
More than one filter can be active at the same time on the same CAN connection.

Prototype
CAN_ERROR_CODE_E CAN_SetContentFilter(CAN CONNECTION_T *can,
CAN_FRAME_T *frameMask, BOOLEAN enable)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which content filter is
enabled/disabled.
<frameMask> Pointer to the mask frame:

<frameMask -> canId> frame mask ID (low level 11-bits for standard frames

and low level 29-bits for extended frames must be
taken into consideration)

 <frameMask -> canDlc> frame mask data length code (from 0 to 8)

<frame -> data> frame mask data field (low level canDlc-bytes must be
taken into consideration)

 <frame -> attributes> frame type; CAN attributes masks are:

CAN_STANDARD_FRAME standard frame format
CAN_EXTENDED_FRAME extended frame format

<enable> Enable/disable flag:

TRUE content filter is enabled

 FALSE content filter is disabled

Return values
CAN_OK Content filter has been successfully enabled/disabled
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_TYPE_ERROR CAN type error
CAN_ERROR Unspecified error

Example
 See example in Section 7.24

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 56 of 60

7.24. CAN_ReadChangedContent()
This function reads a frame only when content change is detected according to
CAN_SetContentFilter() settings (see Section 7.23).
CAN_ReadChangedContent() is able to read only the frames with the same IDs
specified in the frameMasks passed to CAN_SetContentFilter() when content filters
are enabled. If no content filter is enabled, CAN_ReadChangedContent() reads nothing.
CAN_ReadChangedContent() does not apply software filters. Besides if a frame with
content change is received, it will be read both CAN_Read() and
CAN_ReadChangedContent(): if both these two functions are used, the same frame
could be read therefore two times.
This function returns when a frame with changed content is received or when
timeout expires. If timeout is equal to 0, this function waits until it reads a frame
with changed content.
It works on real or virtual CAN interface. Standard and extended format are
supported.

Prototype
CAN_ERROR_CODE_E CAN_ReadChangedContent(CAN CONNECTION_T *can,
CAN_FRAME_T *frame, UINT32 timeout)

Parameters
<can> It’s the name of the CAN_CONNECTION_T on which frame is read.
<frame> Pointer to the frame to be read:

<frame -> canId> frame ID (low level 11-bits for standard frames and

low level 29-bits for extended frames must be taken
into consideration)

 <frame -> canDlc> frame data length code (from 0 to 8)

<frame -> data> frame data field (low level canDlc-bytes must be taken
into consideration)

 <frame -> attributes> frame type; CAN attributes masks are:

CAN_STANDARD_FRAME standard frame format
CAN_EXTENDED_FRAME extended frame format

<timeout> Timeout in msec

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 57 of 60

Return values
CAN_OK Changes in data frame have been successfully received
CAN_TIMEOUT_EXPIRED Timeout is expired
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled
CAN_TYPE_ERROR CAN type error
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
CAN_FRAME_T *frameMask;
CAN_FRAME_T *receivedFrame;
CAN_ERROR_CODE_E code;
int i, j;

frameMask = (CAN_FRAME_T *)malloc(sizeof(CAN_FRAME_T));

receivedFrame = (CAN_FRAME_T *)malloc(sizeof(CAN_FRAME_T));

frameMask -> attributes = CAN_STANDARD_FRAME;
frameMask -> canId = 0x123;
frameMask -> canDlc = 2;
frameMask -> data[0] = 0x00;
frameMask -> data[1] = 0xFF;
frameMask -> data[2] = 0xFF;
…
/* open connection on an enabled interface */
…
CAN_SetContentFilter(&can, frameMask, TRUE);
…
 for (i=0; i<50; i++) {
code = CAN_ReadChangedContent(&can, receivedFrame, 0);

if(code == CAN_OK) {
 printf(“\nreceived changed data frame with CAN ID 0x123”);
 for(j=0; j<receivedFrame->canDlc; j++)

 printf(“\ndata[i] = %x”, receivedFrame->data[i]);
}
…
free(frameMask);
free(receivedFrame);

only the standard frames with ID = 0x123 and with the second data byte or DLC
changed compared to the last received frame are shown

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 58 of 60

7.25. CAN_GetDeviceStats()
This function reads the CAN device statistics. This function is applicable only on real
CAN interface.
Device statistics is the same on all the CAN connections opened on the same CAN
interface. It is reset when controller module is loaded.

Prototype
CAN_ERROR_CODE_E CAN_GetDeviceStats(CAN_CONNECTION_T *can,
 CAN_DEVICE_STATS_T *devStats)

Parameters
<can> It’s the name of the CAN_CONNECTION_T about which device statistics is
read.

<devStats> Pointer to the CAN_DEVICE_STATS_T struct that contains the device
statistics:

<devStats -> errorWarning> CAN error warnings counter
<devStats -> dataOverrun> CAN data overruns counter
<devStats -> wakeUp> CAN wakeups counter
<devStats -> busError> CAN bus errors counter

 <devStats -> errorPassive> CAN error passive states counter
 <devStats -> arbitrationLost> CAN arbitration lost counter
 <devStats -> restarts> CAN restarts counter
 <devStats -> busErrorAtInit> CAN bus error on controller starting counter

Return values
CAN_OK CAN device statistics has been successfully read
CAN_CONNECTION_ERROR CAN connection error
CAN_DISABLED_IF CAN interface of the specified connection is disabled

CAN_VIRTUAL_IF CAN interface of the specified connection is virtual
CAN_ERROR Unspecified error

Example
CAN_CONNECTION_T can;
CAN_DEVICE_STATS_T *devStats;

devStats = (CAN_DEVICE_STATS_T*)malloc(sizeof(CAN_DEVICE_STATS_T));
…
/* open connection on an enabled interface */
…
CAN_GetDeviceStats(&can, devStats);
…
free(devStats);

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 59 of 60

fills devStats with the device statistics

 GE863-PRO3 CAN Package Software User Guide
 1vv0300866 Rev. 0 – 2009-11-27

Reproduction forbidden without Telit Communications S.p.A’s. written authorization - All Rights Reserved. Page 60 of 60

8. Acronyms and Abbreviations

Term Definition
CAN Controller Area Network
LLC Logical Link Control
MAC Media Access Control
ISO International Organization for Standardization
OSI Open Systems Interconnection
HLP Higher Layer Protocols
OS Operating System
BCM Broadcast Manager
CIA CAN in Automation

	1. Introduction
	1.1. Scope
	1.2. Audience
	1.3. Contact Information, Support
	1.4. GNU General Public License
	1.5. Product Overview
	1.6. Document Organization
	1.7. Text Conventions
	1.8. Related Documents
	1.9. Document History

	2. Controller Area Network
	2.1. CAN version 2.0 specification

	3. CAN Package Description
	3.1. Hardware
	3.2. Software
	3.2.1. SocketCAN
	3.2.2. Modules
	3.2.3. CAN connections

	4. CAN Package Setup
	4.1. Modules loading
	4.2. Modules removing
	4.3. Library setup

	5. Functionalities and APIs Summary
	6. APIs Data Types and Structures
	6.1. CAN_ERROR_CODE_E
	6.2. CAN_CONNECTION_T
	6.3. CAN_FRAME_T
	6.4. CAN_SOFTWARE_FILTER_T
	6.5. CAN_HARDWARE_MASK_T
	6.6. CAN_HARDWARE_FILTERS_T
	6.7. CAN_BIT_TIMINGS_T
	6.8. CAN_CTRL_MODE_E
	6.9. CAN_STATE_E
	6.10. CAN_DEVICE_STATS_T

	7. APIs Description
	7.1. CAN_Enable()
	7.2. CAN_Disable()
	7.3. CAN_Open()
	7.4. CAN_Close()
	7.5. CAN_SetBitrate()
	7.6. CAN_GetBitrate()
	7.7. CAN_SetTimings()
	7.8. CAN_GetTimings()
	7.9. CAN_SetCtrlMode()
	7.10. CAN_GetCtrlMode()
	7.11. CAN_GetState()
	7.12. CAN_Read()
	7.13. CAN_Write()
	7.14. CAN_CyclicSending()
	7.15. CAN_ErrorSignaling()
	7.16. CAN_LocalLoopback()
	7.17. CAN_ReceiveOwnFrames()
	7.18. CAN_SetHardwareFilters()
	7.19. CAN_GetHardwareFilters()
	7.20. CAN_AddSoftwareFilter()
	7.21. CAN_DelSoftwareFilter()
	7.22. CAN_SoftwareFiltersList()
	7.23. CAN_SetContentFilter()
	7.24. CAN_ReadChangedContent()
	7.25. CAN_GetDeviceStats()

	8. Acronyms and Abbreviations

