
 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Bluetooth Library User Guide   
For GE863-PRO3 with Linux APIs description 
1VV0300790 Rev. 0 - 23/10/08 
 
 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 2 of 68 
 

 
Disclaimer 
 

The information contained in this document is the proprietary information of Telit Communications 
S.p.A. and its affiliates (“TELIT”).  

The contents are confidential and any disclosure to persons other than the officers, employees, agents 
or subcontractors of the owner or licensee of this document, without the prior written consent of Telit, 
is strictly prohibited. 

 

Telit makes every effort to ensure the quality of the information it makes available. Notwithstanding the 
foregoing, Telit does not make any warranty as to the information contained herein, and does not 
accept any liability for any injury, loss or damage of any kind incurred by use of or reliance upon the 
information. 

 

Telit disclaims any and all responsibility for the application of the devices characterized in this 
document, and notes that the application of the device must comply with the safety standards of the 
applicable country, and where applicable, with the relevant wiring rules. 

 

Telit reserves the right to make modifications, additions and deletions to this document due to 
typographical errors, inaccurate information, or improvements to programs and/or equipment at any 
time and without notice.  

Such changes will, nevertheless be incorporated into new editions of this document. 

 

 

 

 

 

All rights reserved. 
 
 
 
 
 
© 2008 Telit Communications S.p.A.  



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 3 of 68 
 

Applicable Products 
 

 
GE863-PRO3  with Linux OS                 GE863PR3***-*** 

   
The suffix “***-***” depends on the module HW/SW  
configuration. Please contact your Telit representative  for 
 details 
 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 4 of 68 
 

 

Contents 
 

1  Introduction ...................................................................................................................................... 6 
1.1  Scope ........................................................................................................................................................6 

1.2  Audience ..................................................................................................................................................6 

1.3  Contact Information, Support...............................................................................................................6 

1.4  Open Source Licenses.............................................................................................................................7 
1.4.1  BlueZ ...................................................................................................................................................................7 

1.5  Document Organization .........................................................................................................................7 

1.6  Text Conventions ....................................................................................................................................8 

1.7  Terminology ............................................................................................................................................8 

1.8  Related Documents .................................................................................................................................8 

1.9  Document History...................................................................................................................................8 

2  GE863-PRO³-Bluetooth architecture............................................................................................... 9 
2.1  Hardware.................................................................................................................................................9 

2.2  Software...................................................................................................................................................9 
2.2.1  Linux OS overview............................................................................................................................................10 
2.2.2  Bluetooth Overview...........................................................................................................................................11 

2.2.2.1  Sim Access Profile (SAP) .........................................................................................................................12 
2.2.2.2  Headset Profile (HSP) ...............................................................................................................................13 

2.2.3  Linux Bluetooth software framework ................................................................................................................13 

3  Bluetooth module setup .................................................................................................................. 16 
3.1.1  Bluetooth Package Downloading.......................................................................................................................16 
3.1.2  Loading the kernel modules...............................................................................................................................19 
3.1.3  Attach Bluetooth module via UART HCI..........................................................................................................20 
3.1.4  Attach Bluetooth module via USB interface......................................................................................................23 

3.1.4.1  Drivers for some specific Bluetooth modules ...........................................................................................24 
3.1.5  Starting Bluetooth Upper Layers .......................................................................................................................24 
3.1.6  Auto-Setup at system startup .............................................................................................................................25 

4  Commands summary ...................................................................................................................... 27 

5  BlueZ Utilities ................................................................................................................................. 30 
5.1.1  hciattach.............................................................................................................................................................30 
5.1.2  hciconfig ............................................................................................................................................................32 
5.1.3  hcitool ................................................................................................................................................................35 
5.1.4  sdptool ...............................................................................................................................................................37 
5.1.5  rfcomm...............................................................................................................................................................38 

6  Library setup ................................................................................................................................... 40 
6.1  How to Build a Client Application Project.........................................................................................41 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 5 of 68 
 

7  Linux Bluetooth High Level APIs ................................................................................................. 44 
7.1  Description ............................................................................................................................................45 

7.1.1  Data Types .........................................................................................................................................................45 
7.1.1.1  BT_Boolean_t ...........................................................................................................................................45 
7.1.1.2  BT_Return_Code_t ...................................................................................................................................45 
7.1.1.3  BT_Addr_t ................................................................................................................................................47 
7.1.1.4  BT_Process_Id ..........................................................................................................................................47 
7.1.1.5  BT_Dev_Name_t ......................................................................................................................................47 
7.1.1.6  BT_Passkey_t............................................................................................................................................47 
7.1.1.7  BT_Device_t .............................................................................................................................................48 
7.1.1.8  BT_Service_t ............................................................................................................................................48 
7.1.1.9  BTList .......................................................................................................................................................48 
7.1.1.10  BT_Services_List_t...................................................................................................................................48 
7.1.1.11  BT_Devices_List_t ...................................................................................................................................49 

7.1.2  Configuration Files ............................................................................................................................................49 
7.1.2.1  bt_lib.conf .................................................................................................................................................49 

7.1.3  Linux Shell Script ..............................................................................................................................................49 
7.1.3.1  BT_Bluetooth_Start.sh..............................................................................................................................49 
7.1.3.2  BT_Bluetooth_Stop.sh ..............................................................................................................................49 

7.1.4  Functions............................................................................................................................................................50 
7.1.4.1  Generic Bluetooth procedures...................................................................................................................50 

7.1.4.1.1  BT_PrintLibVersion()..........................................................................................................................50 
7.1.4.1.2  BT_Scan()............................................................................................................................................50 
7.1.4.1.3  BT_Pair_Device() ................................................................................................................................51 
7.1.4.1.4  BT_Unpair_Device() ...........................................................................................................................52 
7.1.4.1.5  BT_Has_Bonding()..............................................................................................................................53 
7.1.4.1.6  BT_List_Bondings() ............................................................................................................................54 
7.1.4.1.7  BT_Set_Local_Name() ........................................................................................................................55 
7.1.4.1.8  BT_Get_Local_Name() .......................................................................................................................56 
7.1.4.1.9  BT_Get_Remote_Name() ....................................................................................................................57 
7.1.4.1.10  BT_Browse_Services () .....................................................................................................................58 

7.1.4.2  SAP Bluetooth Procedures........................................................................................................................59 
7.1.4.2.1  BT_Start_SAP()...................................................................................................................................59 
7.1.4.2.2  BT_Stop_SAP() ...................................................................................................................................60 

7.1.4.3  Headset Bluetooth Procedures ..................................................................................................................61 
7.1.4.3.1  BT_Headset_Start() .............................................................................................................................61 
7.1.4.3.2  BT_Headset_Stop()..............................................................................................................................62 
7.1.4.3.3  BT_Connect_Headset ().......................................................................................................................63 
7.1.4.3.4  BT_Disconnect_Headset () ..................................................................................................................64 
7.1.4.3.5  BT_Set_Speaker_Volume_Gain () ......................................................................................................65 
7.1.4.3.6  BT_Get_Speaker_Volume_Gain ()......................................................................................................66 

8  List of acronyms and Abbreviation ................................................................................................ 68 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 6 of 68 
 

1 Introduction 
The GE863-PRO3 is an innovation to the quad-band, RoHS compliant GE863 product family which 
includes a powerful ARM9TM processor core exclusively dedicated to customer applications. The 
concept of collocating a powerful processor core with the GSM/GPRS engine allows developers to 
host their application directly. The PRO3 incorporates much of the necessary hardware for 
communicating microcontroller solutions, including the critical element of memory, significant 
simplification of the bill of material, vendor management, and logistics effort are achieved. 
 

1.1 Scope 
 
This user guide serves the following purpose: 
 

 Describes GE863-PRO³-Bluetooth hardware and software architecture 
 Describes how software developers can use the functions of the Bluetooth software package to 

configure and manage a Bluetooth module. 
 

1.2 Audience 
This User Guide is intended for software developers who develop applications on the GE863-PRO³ 
module that needs to configure and manage Bluetooth module. 
 

1.3 Contact Information, Support 
Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for 
improvements. 
 
For general contact, technical support, report documentation errors and to order manuals, contact Telit’s 
Technical Support Center at: 
 
TS-EMEA@telit.com or http://www.telit.com/en/products/technical-support-center/contact.php 
 
Telit appreciates feedback from the users of our information. 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 7 of 68 
 

1.4 Open Source Licenses 
Bluetooth software package is made up of different Open Source Software licensed as follows. 

1.4.1 BlueZ 
BlueZ is an implementation of the Bluetooth™ wireless standards specifications for Linux. The code is 
licensed under the GNU General Public License (GPL) and is now included in the Linux 2.6 kernel 
series. 
For further information about GNU License please have a look at http://www.gnu.org/copyleft/gpl.html. 
 

1.5 Document Organization 
 
This manual contains the following chapters: 

• “Chapter 1, Introduction” provides a scope for this manual, target audience, technical contact 
information, and text conventions. 

• “Chapter 2, GE863-PRO³-Bluetooth architecture” describes the general hardware and software 
architecture for Bluetooth-GE863-PRO3 system. 

• “Chapter 3, Bluetooth module setup” describes how to downloading and installing the needed 
Bluetooth support modules and bluez and dbus packages. 

• “Chapter 4, Commands summary” provides a list and some examples on the most commonly 
used shell commands for configuring Bluetooth module. 

• “Chapter 5, BlueZ Utilities” provides a reference to the most used bluez commands. 

• “Chapter 6, Library Setup” gives guidelines to setup your implementation project. 

• “Chapter 7, Linux Bluetooth High Level APIs” describes the APIs that can be used by customer 
applications to configure and manage Bluetooth module from source code. 

• "Chapter 8, Appendix" describes Bluetooth headset and sap profile architecture. 

•  “Chapter 9, List of acronyms and Abbreviation” provides definition for all the acronyms and 
abbreviations used in this guide. 

 
 
 
How to Use 
 
If you are new to this product, it is highly recommended to start by reading through 
TelitGE863PRO3Linux_Development and TelitGE863PRO3Linux_SW_UserGuide manuals and this 
document in their entirety in order to understand the concepts and specific features provided by the 
built in software of the GE863-PRO3. 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 8 of 68 
 

 

1.6 Text Conventions 
This section lists the paragraph and font styles used for the various types of information presented in 
this user guide. 
 
Format Content 
Courier Linux shell commands at command prompt. 
 
 

1.7 Terminology 
In the following sections, the term “host” will refer to the computer where the development 
environment is running, while we’ll refer to the Pro3 as the target. 
The term “Bluetooth module” will refer to Bluetooth  hardware connected to the PRO3. This hardware 
consists of radio, baseband and the link manager and will be found in Bluetooth chips, dongles and 
notebooks. 
The term “local Bluetooth Adapter” will be used to refer to the Bluetooth module when it is connected 
to a remote Bluetooth device.  
 

1.8 Related Documents 
The following documents are related to this user guide: 
 

[1] Telit_GE863-PRO³_Hardware_User_Guide 
[2] TelitGE863PRO3_EVK_UserGuide 
[3] TelitGE863PRO3Linux_SW_UserGuide 
[4] TelitGE863PRO3Linux_Development 

 
 

1.9 Document History 
 
RReevviissiioonn  DDaattee  CChhaannggeess  
ISSUE #0 23/10/08 First Release 

 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 9 of 68 
 

2 GE863-PRO³-Bluetooth architecture 

2.1 Hardware 
 
The BT module is connected and communicates with GE863-PRO³ through an UART interface.  
The PCM link connects BT chip to the DVI interface of the GSM module of GE863-PRO3 to transport 
the PCM audio data for the HS profile. 
For further hardware information please refer to [1] , .  

 
 
 
 

 
 

2.2 Software 
Below a high level description of Linux OS Architecture and the different software layers involved in 
the Bluetooth package to better understand how local Bluetooth Adapter can be configured and 
controlled by Telit GE863-PRO³. 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 10 of 68 
 

2.2.1 Linux OS overview 
 
 
The kernel is the central part of the GNU/Linux operating system: its main task is to manage system’s 
resources in order to make the hardware and the software to communicate. A kernel usually deals 
with process management (including inter-process communication), memory management and device 
management. 
 
The Linux kernel belongs to the family of Unix-like operating system kernel; created in 1991, it has 
been developed in the years by a huge number of contributors worldwide, becoming one of the most 
common and versatile kernel for embedded systems. 
 
Below there is a picture representing, from a high level perspective, the architecture of a GNU/Linux 
operating system. 

 
 
 

 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 11 of 68 
 

 
 
 

 
 

 
Two regions can be identified: 
 
 

1) User space: where the user applications are executed. 
2) Kernel space: where the kernel (with all its components such as device drivers) works. 

 
These two regions are separated and have different memory address spaces; there are several 
methods for user/kernel interaction: 
 

• Using the System Call Interface that connects to the kernel and provides the mechanism to 
communicate between the user-space application and the kernel through the C library. 

• Using kernel calls directly from application code leaping over the C library. 
• Using the virtual filesystem /proc. 

 
 
The ordinary C library in Linux system is the glibc. Uclibc is a C library mainly targeted for developing 
embedded Linux systems; despite being much smaller than the glibc it almost has all its features 
(including shared libraries and threading), making easy to port applications from glibc to uclibc. 
The Linux kernel architecture-independent code stays on the top of platform specific code for the 
GE863-PRO³ board: this code allows exploiting all the hardware features of the GE863-PRO³. 
 
 
 
 

2.2.2 Bluetooth Overview 
Bluetooth is a wireless protocol utilizing short-range communications technology facilitating both voice 
and data transmissions over short distances from fixed and/or mobile devices. 
Bluetooth provides a way to connect and exchange information between devices such as mobile 
phones, telephones, laptops, personal computers, printers, GPS receivers, digital cameras, and video 
game consoles over a secure, globally unlicensed Industrial, Scientific, and Medical (ISM) 2.4 GHz 
short-range radio frequency bandwidth. 
The specification is developed, published and promoted by the Bluetooth Special Interest Group 
(SIG).  
 
 
 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 12 of 68 
 

Application

RFCOMM

L2CAP

HCI

Baseband

Bluetooth Radio

Link Manager (LM)Audio

O
B
E
X

        AT
COMMANDS

SDPTCS

TCP/IP

PPP

 
 
In order to use Bluetooth wireless technology, a device must be able to interpret certain Bluetooth 
profiles. The Profiles describe how the technology is used (i.e. how different parts of the specification 
can be used to fulfill a desired function for a Bluetooth device). Bluetooth profiles are general 
behaviors through which Bluetooth enabled devices communicate with other devices. Bluetooth 
technology defines a wide range of profiles that describe many different types of use cases. 
 
 

2.2.2.1  Sim Access Profile (SAP) 
 
The SIM Access Profile defines the protocols and procedures that shall be used to access a GSM SIM 
card via a Bluetooth link.  
For example, this profile allows devices such as car phones with built in GSM transceivers to connect 
to a SIM card in a Bluetooth enabled phone. Therefore the car phone itself does not require a 
separate SIM card.  
Furthermore the user can personalize his car embedded phone with data (like contacts, messages 
and so on) contained in his personal SIM card. 
 
In order to ensure secure communication between Bluetooth devices, several security measures are 
mandatory. 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 13 of 68 
 

2.2.2.2  Headset Profile (HSP) 
 
The Headset Profile provides support for the popular Bluetooth Headsets to be used with mobile 
phones. 
With this profile the headset can be wirelessly connected for the purposes of acting as the device’s 
audio input and output mechanism, providing full duplex audio. The headset increases the user’s 
mobility while maintaining call privacy. 
 
 
 

2.2.3 Linux Bluetooth software framework 
 
Linux Bluetooth package is made up of different components:  
 

• BlueZ – official Linux Bluetooth protocol stack 
• BT_lib - Bluetooth High Level APIs 

 
BlueZ provides kernel modules, libraries and utilities. It is composed by the following components: 
 

• UART driver – Implements the UART transport layer 
• BlueZ Core Layer – Provides a standard interface to the Bluetooth baseband controller and link 

manager services (host controller interface) 
• L2CAP, SCO, RFCOMM - Bluetooth lower layers 
• BlueZ Utilities – Provides some tools which simplify management of Bluetooth module 
 

Bluetooth module is controlled via the Host Controller Interface (HCI) and for the communication  
between the host stack and the Bluetooth module a specific host transport driver is used.  
 
BlueZ implements HCI and Bluetooth lower layer (like L2CAP, SCO, RFCOMM) inside the kernel. 
Upper Bluetooth protocol layers are implemented as libraries (like Service Discovery Protocol – SDP) 
and made available as shell command or service exported through the system message bus. 
 
The image below shows architecture of the software framework used to configure and control 
Bluetooth module. 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 14 of 68 
 

               

Bluetooth Applications

Bluetooth Hardware

BlueZ Core

   HCI
sockets

Kernel
space

User
space

  SCO
sockets

L2CAP
protocol

  Other
drivers

USB
driver

UART
 driver

BlueZ
utilities

Host Controller   Interface (HCI)

Berkley      Socket     Interface

Protocol    Interface

Driver   Interface

 - BlueZ components.

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 15 of 68 
 

The following scheme represents the SW architecture of the system GE863-PRO3 together with the 
BT module: 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 16 of 68 
 

3 Bluetooth module setup 
 

3.1.1 Bluetooth Package Downloading 
Before setting up Bluetooth module, the components of the Bluetooth Package must be downloaded 
onto GE863-PRO³ filesystem.  
 
If you don’t have Bluetooth Package yet please contact our technical assistance on the following 
email: TS-EMEA@telit.com. 
 
Connect the GE863-PRO³ to your host system via serial cable (use Debug port of the EVK, for further 
details refer to document [2]). Open a terminal program (such as Hyperterminal or Procomm) on your 
host system and use for the connection the following parameters: 
 

Bits per second: 115200 
Data bits: 8 
Parity: None 
Stop bits: 1 
Flow Control: None 

 
Turn GE863-PRO³ on. Once the system startup has finished, the terminal will display the shell prompt 
as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 17 of 68 
 

 
 
Start Colinux and make sure the Ethernet on USB connection via USB port is correctly configured as 
shown in paragraph 5 of [4] . 
 
Now start Eclipse and download the following files onto GE863-PRO³ filesystem as shown in 
paragraph 7.2 of [4] : 
 

• UART Driver for Bluetooth module: 
- hci_uart.ko 
 

• BlueZ Core Layer: 
- bluetooth.ko 
 

• Bluetooth lower layers: 
- l2cap.ko 
- rfcomm.ko 
- sco.ko 
 
 

• BlueZ Utilities: 
- bluez/ 
 

• Bluetooth High level API: 
- BT_lib/ 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 18 of 68 
 

 
 
In order to install the Bluetooth modules you have to execute the following steps: 
 
Now create the kernel modules folders: 
# mkdir /lib/modules/2.6.24-rc5-rt1/kernel/net 

# mkdir /lib/modules/2.6.24-rc5-rt1/kernel/net/bluetooth 

# mkdir /lib/modules/2.6.24-rc5-rt1/kernel/net/bluetooth/rfcomm 

# mkdir /lib/modules/2.6.24-rc5-rt1/kernel/drivers/bluetooth 
 
 
Now move the downloaded files from the download folder to the correct destination folder.  
Supposing you are into the download folder, type: 
 
 
• For UART Driver: 
# mv hci_uart.ko /lib/modules/2.6.24-rc5-rt1/kernel/drivers/bluetooth 

 
• For BlueZ Core Layer: 
# mv bluetooth.ko /lib/modules/2.6.24-rc5-rt1/kernel/net/bluetooth 

 
• For Bluetooth lower layers: 
# mv l2cap.ko /lib/modules/2.6.24-rc5-rt1/kernel/net/bluetooth 

# mv sco.ko /lib/modules/2.6.24-rc5-rt1/kernel/net/bluetooth 

# mv rfcomm.ko /lib/modules/2.6.24-rc5-rt1/kernel/net/bluetooth/rfcomm 
 
 
• For BlueZ Utilities : 
 
# mv bluez/lib/libexpat.so.1 /lib 

# mv bluez/lib/libdbus-1.so.3 /lib 

# mv bluez/lib/libbluetooth.so.2 /lib 

# mv bluez/ROOT_DIR_FILES/* /etc 

# rm –r bluez/ROOT_DIR_FILES 

# mv bluez /home 

# mkdir /var/lib/dbus 

# mkdir /var/run/dbus 

# mv bluez /home 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 19 of 68 
 

(Please, make sure all bluez utilities have the right execution privileges.) 
 
 
• Update PATH environment variable: 
 
# export PATH=$PATH:./:/home/bluez/bin:/home/bluez/sbin 

 

 

Finally add the messagebus user to the user group: 
# adduser -SDH messagebus 

 

 

 

 

 

3.1.2 Loading the kernel modules 
 
Go to kernel/ folder and load the kernel modules as shown below: 
 
# insmod /lib/modules/2.6.24-rc5-rt1/kernel/net/Bluetooth/bluetooth.ko 

# insmod /lib/modules/2.6.24-rc5-rt1/kernel/net/Bluetooth/l2cap.ko 

# insmod /lib/modules/2.6.24-rc5-rt1/kernel/net/Bluetooth/rfcomm/rfcomm.ko 

# insmod /lib/modules/2.6.24-rc5-rt1/kernel/net/Bluetooth/sco.ko 

# insmod /lib/modules/2.6.24-rc5-rt1/kernel//drivers/Bluetooth/hci_uart.ko 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 20 of 68 
 

 
 

Once the kernel modules has been successfully loaded, Bluetooth module can be attached to the 
system and upper layers of the Bluetooth protocol stack can be started. 
 

3.1.3 Attach Bluetooth module via UART HCI 
After loading kernel modules is possible to attach one (or more) Bluetooth module to the system. For 
example, if a CSR chip is used, type the following commands to start the Bluetooth module. 
#hciattach –pt 10 ttyS1 csr 115200 flow 

#hciconfig hci0 up 

 
According with the sintax of the hciattach utility (refer to paragraph 5.1.1) changing the “type” option 
different Bluetooth modules can be used. 
Example: in order to use an Ericsson based module the following command lines should be used: 
 
#hciattach –pt 10 ttyS1 ericsson 115200 flow 

#hciconfig hci0 up 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 21 of 68 
 

Else, for unknown Bluetooth module vendor that supports HCI UART interface, type: 
 
#hciattach –pt 10 ttyS1 any 115200 flow 

#hciconfig hci0 up 
 
Pay attention to set the additional parameters of the “hciattach” (like speed, control flow etc…) in 
accord with the desired Bluetooth module. 
 

Once started the Bluetooth module, to check its status, type:  
#hciconfig –a 

 

 
 
 
 
Once Bluetooth module is attached to the system, basic Bluetooth features are available using BlueZ 
Utilities from the shell.  
For example it is possible to perform a scan for remote Bluetooth devices in range. 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 22 of 68 
 

 
 
 
 
 
 
 
It is also possible to set some parameter of the Bluetooth module.  
The following example shows how to set the friendly-name of the local device. 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 23 of 68 
 

 
 
 
 
 
To make also available Bluetooth High Level APIs, the upper layer of the Bluetooth protocol stack 
should be started. 
 
 

3.1.4 Attach Bluetooth module via USB interface 
 
The “hci_uart.ko” kernel module is a driver for Bluetooth modules which implement the HCI via UART 
interface. In order to use a Bluetooth module, which implements the HCI via USB interface, the 
“hci_usb.ko” kernel module should be used instead of “hci_uart.ko”. 
Moreover, the USB support must be properly installed and running on the PRO3 (“usb-core” and 
“ohci_hcd” kernel modules should be loaded). 
 
Bluetooth USB devices get initialized automatically when they are plugged in; if it does not happen, 
they can be brought up manually with the hciconfig command : 
#hciconfig hci0 up 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 24 of 68 
 

3.1.4.1 Drivers for some specific Bluetooth modules 
 
BlueZ supports a wide range of Bluetooth devices through the Host Control Interface (HCI). This 
interface provides a uniform method of accessing the Bluetooth module capabilities. 
In order to be compatible with BlueZ, a bluetooth module must export the HCI . 
 
The HCI can be exposed through different physical bus which are supported by Linux using a specific 
driver for each one. These drivers are included in the Linux kernel sources.  
Once compiled with the Bluetooth support, these drivers can be found under the 
“lib/modules/kernel_version/kernel/drivers/bluetooth/” directory of the kernel binaries. 
 
Example: 
 

- hci_uart  :  Bluetooth HCI UART driver. 
 

- hci_usb.ko  :  HCI USB driver. 
 

- hci_vhci.ko   :   Bluetooth virtual HCI driver. 
 

- bcm203x.ko  :  Broadcom Blutonium firmware driver. 
 

- bfusb.ko  :  AVM BlueFRITZ! USB driver. 
 

- bpa10x.ko  :  Digianswer Bluetooth USB driver. 
 

- btsdio.ko   :  Generic Bluetooth SDIO driver. 
 
 
Choose the driver in accord with the desired Bluetooth module. 
 

3.1.5 Starting Bluetooth Upper Layers 
 
Before starting Bluetooth Upper Layers, the D-Bus application must be in running. If not yet started 
type the following commands: 
 
# rm /var/run/dbus/* 

#dbus-uuidgen –-ensure  

#dbus-daemon –-system 

Once the D-Bus has been actived it is possible to start the Bluetooth daemons: 
#hcid –n & 

#sdpd –n & 

 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 25 of 68 
 

 
 

Now Bluetooth High Level APIs are available. Using them, the BLUETOOTH MODULE can be 
controlled from source. 

3.1.6  Auto-Setup at system startup 
 
The shell script “BT_Bluetooth_Start.sh” (provided by Telit) will perform all the necessary steps in 
order to initialize the Bluetooth module and run BlueZ correctly.  
This script refers to a configuration with only a CSR Bluetooth module connected through a UART 
interface. If a different Bluetooth device should be used, change the line: 
 
hciattach -pt 10 /dev/ttyS1 csr 115200 flow 
 
in accord with the desired Bluetooth module (as explained in the paragraphs 3.1.3 , 3.1.4 and 3.1.4.1). 
 
 
If the upper layers of BlueZ are not necessaries, the following instructions can be used instead of the 
“BT_Bluetooth_Start.sh” script : 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 26 of 68 
 

hciattach -pt 10 /dev/ttyS1 csr 115200 flow 

hciconfig hci0 up 

 
 
 
Once completed Bluetooth operations, the shell script “BT_Bluetooth_Stop.sh” (provided by Telit) can 
be used in order to stop the BlueZ framework in the right way. 
 
Refer to paragraph 7.1.3 for more details about these scripts. 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 27 of 68 
 

4 Commands summary 
There are mainly two possible ways to configure and control the Bluetooth module: shell commands 
(BlueZ Utilities) and source code using Bluetooth High Level APIs. 
BlueZ Utilities (hciconfig, hcitool, sdptool, rfcomm) provide simple Linux shell commands that can be 
used to set some specific parameters of the Bluetooth module and perform basic Bluetooth functions. 
Customer applications using Bluetooth High Level APIs, can perform almost the same operations plus 
some advanced and more complex tasks. 
 
The table below shows examples of the most commonly used shell commands and Bluetooth High 
Level APIs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 28 of 68 
 

 

Functionality Shell Commands 
(BlueZ Utilities) High Level APIs 

Enable page and inquiry 
scan (discoverable) hciconfig hci0 piscan  

Disable page and inquiry 
scan (not discoverable) hciconfig hci0 noscan  

Set local name to 
My_name hciconfig hci0 name My_name BT_Set_Local_Name() 

 

Get local name hciconfig hci0 name BT_Get_Local_Name() 
dbus-daemon 
hcid 
sdpd Start bluez daemons 

hciattach 

BT_Bluetooth_Start() 

 
 
 

 
 
      Bluez 
  Bluetooth 
  Daemons 
    Manag. 
 
 

Stop bluez daemons 

 

BT_Bluetooth_Stop() 

Inquire remote devices 
(with name resolution) hcitool -i hci0 inq BT_Scan() 
Display active baseband 
connections hcitool -i hci0 con  

Retrieve Remote device 
name  BT_Get_Remote_Name() 

Look up if a device has 
bonding  BT_Has_Bonding() 

List devices bonded  BT_List_Bondings() 
Create the bonding  BT_Pair_Device() 

Bluetooth 
Connection 

Manag 

Remove the bonding  BT_Unpair_Device() 
Browse all available 
services on the remote 
device specified 

sdptool browse 00:0C:78:32:00:64 BT_Browse_Services() 

Search for a specific 
service sdptool search SP  

Connect a remote device 
to a specific service  BT_Connect_Services() 

Bluetooth 
Service 
Manag 

Disconnect a remote 
device from a spec. serv  BT_Disconnect_Services() 

Create a Sap connection  BT_Start_SAP() 
 
 
  Bluetooth 
    SAP 
  Manag. 
 
 

Remove a Sap 
connection  BT_Stop_SAP() 

Connect a headset device  BT_Connect_Headset() 
Disconnect a headset 
device  BT_Disconnect_Headset() 

 
 
 Bluetooth 
 Headset 
  Manag. Set audio speaker volume  BT_Set_Volume_Gain() 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 29 of 68 
 

 
 Get audio speaker volume  BT_Get_Volume_Gain() 

 

 
All the shell commands seen above can be used from source code performing the "system" system 
call (i.e.  system("hciconfig hci0 piscan");  ). 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 30 of 68 
 

5 BlueZ Utilities 
BlueZ Utilities (BU) is a set of tools that allow to configure and manage Bluetooth module by linux 
command shell. 
BlueZ Utilities package includes the following executables: 
 

 hciattach: attaches serial devices via UART HCI to BlueZ stack; 
 hciconfig: configures Bluetooth module; 
 hcitool: configures Bluetooth connections; 
 sdptool: controls and interrogates SDP servers; 
 rfcomm: manages the RFCOMM configuration of the local Bluetooth adapter. 

 
BlueZ Utilities are part of BlueZ package, please have a look to paragraph  1.4.1 for information about 
BlueZ License. 
 
The following subparagraphs describe BU commands as shown in man pages.  
 
 

5.1.1 hciattach 
Hciattach is used to attach a serial UART to the Bluetooth stack as HCI transport interface. 
 
Synopsis 
       hciattach [-n] [-p] [-t timeout] tty type|id speed flow bdaddr 
 
Options 
       -n     Don't detach from controlling terminal. 
 
       -p     Print the PID when detaching. 
 
       -t timeout 
              Specify an initialization timeout.  (Default is 5 seconds.) 
 
       tty    This specifies the serial device to attach. A leading  /dev  can be omitted. Examples: 
/dev/ttyS1 ttyS2 
 
       type|id 
              The type or id of the Bluetooth device that is to be attached, like vendor or other device 
specific identifier. Currently  sup- ported types are 
 
              type   description 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 31 of 68 
 

              any    Unspecified   HCI_UART   interface,  no  vendor  specific 
                     options 
 
              ericsson 
                     Ericsson based modules 
 
              digi   Digianswer based cards 
 
              xircom Xircom PCMCIA cards: Credit Card Adapter  and  Real  Port 
                     Adapter 
 
              csr    CSR  Casira  serial  adapter  or BrainBoxes serial dongle 
                     (BL642) 
 
              bboxes BrainBoxes PCMCIA card (BL620) 
 
              swave  Silicon Wave kits 
 
              bcsp   Serial adapters using CSR chips with BCSP serial protocol 
 
       Supported IDs are (manufacturer id, product id) 
 
              0x0105, 0x080a 
                     Xircom  PCMCIA  cards:  Credit Card Adapter and Real Port 
                     Adapter 
 
              0x0160, 0x0002 
                     BrainBoxes PCMCIA card (BL620) 
 
 
       speed  The speed specifies the UART speed to use. Baudrates higher than 115.200bps requires 
vendor specific initializations that are not implemented for all types of devices. In general the following 
speeds are supported: 
9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600 
Supported  vendor devices are automatically initialized to their respective best settings. 
 
       flow   If the keyword flow is appended to  the  list  of  options  then hardware  flow control is 
forced on the serial link ( CRTSCTS ). All above mentioned device types have flow set by default. To 
force no flow control use noflow instead. 
 
 
       bdaddr The bdaddr specifies the Bluetooth Address to use.  Some devices (like the STLC2500) 
do not store the Bluetooth address in hard-ware memory.  Instead it must be uploaded during the 
initialization process. If this argument is specified, then the address will be used to initialize the device.  
Otherwise, a default address will be used. 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 32 of 68 
 

5.1.2 hciconfig 
 
hciconfig  is used to configure Bluetooth devices.  hciX is the name of a Bluetooth device installed in 
the system. If hciX is not given, hci-onfig prints name and basic information about all the Bluetooth 
devices installed in the system. If hciX is given but no command is given, it prints basic information on 
device hciX only. Basic information is interface type, BD address, ACL MTU, SCO MTU, flags (up, init, 
running, raw, page scan enabled, inquiry scan enabled, inquiry, authentication enabled, encryption 
enabled). 
 
Synopsis 
       hciconfig -h 
       hciconfig [-a] 
       hciconfig [-a] [command [command parameters]] 
 
Options 
       -h, --help 
              Gives a list of possible commands. 
 
       -a, --all 
              Other than the basic info, print  features,  packet  type,  link 
              policy, link mode, name, class, version. 
 
Parameters 
       up     Open and initialize HCI device. 
 
       down   Close HCI device. 
 
       reset  Reset HCI device. 
 
       rstat  Reset statistic counters. 
 
       auth   Enable authentication (sets device to security mode 3). 
 
       noauth Disable authentication. 
 
       encrypt 
              Enable encryption (sets device to security mode 3). 
 
       noencrypt 
              Disable encryption. 
 
       secmgr Enable security manager (current kernel support is limited). 
 
       nosecmgr 
              Disable security manager. 
 
       piscan Enable page and inquiry scan. 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 33 of 68 
 

 
       noscan Disable page and inquiry scan. 
 
       iscan  Enable inquiry scan, disable page scan. 
 
       pscan  Enable page scan, disable inquiry scan. 
 
       ptype [type] 
              Without specifying type, displays the current packet types. Otherwise, all the packet types 
specified by type are set.  type  is  a  comma-separated list of packet types, where the possible packet 
types are DM1, DM3, DM5, DH1, DH3, DH5, HV1, HV2, HV3. 
 
       name [name] 
              Without specifying, prints local name. Otherwise, sets local name to name. 
 
       class [class] 
              Without specifying, prints class of device. Otherwise, sets class of device to class. class is a 
24-bit hex  number  describing the class of  device,  
       voice [voice] 
              Without specifying, prints voice setting. Otherwise, sets voice setting  to  voice.   voice  is  a 
16-bit hex number describing the voice setting. 
 
       iac [iac] 
              Without specifying iac, prints the current IAC setting. Otherwise, sets the IAC to iac. 
 
       inqtpl [level] 
              Without specifying level, prints out the current inquiry transmit power level. Otherwise, sets 
inquiry transmit power level to level. 
 
       inqmode [mode] 
              Without specifying mode, prints out the current  inquiry  mode.  Otherwise, sets inquiry mode 
to mode. 
 
       inqdata [data] 
              Without specifying name,  prints out the current inquiry data. Otherwise, sets inquiry data to 
data. 
 
       inqtype [type] 
              Without specifying type, prints out the current inquiry scan  type.  Otherwise, sets inquiry scan 
type to type. 
 
       inqparams [win:int] 
              Without specifying win:int, prints inquiry scan window and interval. Otherwise, sets inquiry 
scan window to win  slots  and  inquiry  scan interval to int slots. 
 
       pageparms [win:int] 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 34 of 68 
 

              Without specifying win:int,  prints page scan window and interval. Otherwise, sets page scan 
window to win slots and page scan  interval to int slots. 
 
       pageto [to] 
              Without specifying to, prints page timeout. Otherwise, sets page timeout to.I to slots. 
 
       afhmode [mode] 
              Without specifying mode, prints out the current AFH mode.  Otherwise, sets AFH mode to 
mode. 
 
       sspmode [mode] 
              Without specifying mode, prints out the current Simple Pairing mode. Otherwise, sets Simple 
Pairing mode to mode. 
 
       aclmtu mtu:pkt 
              Sets ACL MTU to to mtu bytes and ACL buffer size to pkt packets. 
 
       scomtu mtu:pkt 
              Sets SCO MTU to mtu bytes and SCO buffer size to pkt packets. 
 
       putkey <bdaddr> 
              This command stores the link key for bdaddr on the device. 
 
       delkey <bdaddr> 
              This  command  deletes  the  stored link key for bdaddr from the device. 
 
       oobdata 
              Display local OOB data. 
 
       commands 
              Display supported commands. 
 
       features 
              Display device features. 
 
       version 
              Display version information. 
 
       revision 
              Display revision information. 
 
       lm [mode] 
              Without specifying mode , prints link mode.  The modes MASTER, SLAVE mean, 
respectively, to ask to become master or to remain slave when a connection request comes in.  
The mode ACCEPT means that the baseband  connections will be accepted even if there are no 
listening AF_BLUETOOTH sockets. 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 35 of 68 
 

The mode NONE sets link policy  to  the  default  behavior  of remaining  slave  and  not  accepting  
baseband connections when there are  no  listening  AF_BLUETOOTH  sockets.  
 
 

5.1.3 hcitool 
 
hcitool  is  used to configure Bluetooth connections and send some special command to Bluetooth 
devices. If no command is given, or if the option -h is used, hcitool prints some usage information and 
exits. 
 
 
Synopsis 
       hcitool [-h] 
       hcitool [-i <hciX>] [command [command parameters]] 
 
 
 
Options 
       -h     Gives a list of possible commands 
 
       -i <hciX> 
              The command is applied to device hciX , which must be the name of an installed Bluetooth 
device. If not specified, the command will be sent to the first available Bluetooth device. 
 
Parameters 
       dev    Display local devices 
 
       inq    Inquire  remote  devices.  For each discovered device, Bluetooth device address, clock 
offset and class are printed. 
 
       scan   Inquire remote devices. For each discovered device, device name are printed. 
 
       name <bdaddr> 
              Print  device  name  of  remote  device  with  Bluetooth address bdaddr. 
 
       info <bdaddr> 
              Print device name, version and supported features of remote device with Bluetooth address 
bdaddr. 
 
       spinq  Start  periodic inquiry process. No inquiry results are printed. 
 
       epinq  Exit periodic inquiry process. 
 
       cmd <ogf> <ocf> [parameters] 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 36 of 68 
 

              Submit an arbitrary HCI command to local device.  ogf,  ocf  and parameters are hexadecimal 
bytes. 
 
       con    Display active baseband connections 
 
       cc [--role=m|s] [--pkt-type=<ptype>] <bdaddr> Create baseband connection to remote device with 
Bluetooth address bdaddr.  Option --pkt-type specifies a list of allowed packet types.   <ptype> is a 
comma-separated  list of packet types, where the possible packet types are DM1, DM3, DM5, DH1, 
DH3,  DH5, HV1, HV2, HV3.  Default is to allow all packet types. Option --role can have value m (do 
not allow role switch, stay master) or s (allow role switch, become slave if the peer asks to become 
master). Default is m. 
 
       dc <bdaddr> 
              Delete baseband connection from remote device with Bluetooth address bdaddr. 
 
       sr <bdaddr> <role> 
              Switch role for the baseband connection from the remote device to master or slave. 
 
       cpt <bdaddr> <packet types> 
              Change packet types for baseband connection to device with Bluetooth address bdaddr.  
packet types is a comma-separated list of packet types, where the possible packet types are DM1, 
DM3, DM5, DH1, DH3, DH5, HV1, HV2, HV3. 
 
       rssi <bdaddr> 
              Display received signal strength information for the connection to the device with Bluetooth 
address bdaddr. 
 
       lq <bdaddr> 
              Display link quality for the connection to the device with Bluetooth address bdaddr. 
 
       tpl <bdaddr> [type] 
              Display power level transmission for the connection to the device with Bluetooth address 
bdaddr.  The type can be 0 for the current power level in transmission (which is default) or 1 for the 
maximum power level in transmission. 
 
       afh <bdaddr> 
              Display AFH channel map for the connection to  the  device  with Bluetooth address bdaddr. 
 
       lst <bdaddr> [value] 
              With no value, displays link supervision timeout for the connection to the device with 
Bluetooth address bdaddr.  If value is given, sets the link supervision timeout for that connection to 
value slots, or to infinite if value is 0. 
 
       auth <bdaddr> 
              Request authentication of the device  with  Bluetooth  address bdaddr. 
 
       enc <bdaddr> [encrypt enable] 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 37 of 68 
 

              Enable or  disable the encryption for the device with Bluetooth address bdaddr. 
 
       key <bdaddr> 
              Change the connection link key for  the  device  with  Bluetooth address bdaddr. 
 
       clkoff <bdaddr> 
              Read  the  clock  offset  for  the device with Bluetooth address bdaddr. 
 
       clock [bdaddr] [which clock] 
              Read the clock for the device  with  Bluetooth  address  bdaddr. The clock can be 0 for the 
local clock or 1 for the piconet clock (which is default). 
 
 

5.1.4 sdptool 
 
sdptool  provides the interface for performing SDP queries on Bluetooth devices, and administering a 
local sdpd. 
 
Synopsis 
       sdptool [options]  {command}  [command parameters ...] 
 
Parameters 
       The following commands are available.  In all  cases  bdaddr  specifies the  device to search or 
browse.  If local is used for bdaddr, then the local sdpd is searched. 
 
       Services are identified and manipulated  with  a  4-byte  record_handle (NOT  the  service  name).  
To find a service's record_handle, look for the "Service RecHandle" line in the search or browse 
results 
 
       search [--bdaddr bdaddr] [--tree] [--raw] [--xml] service_name 
 Search for services. 
        Known service names are DID, SP, DUN, LAN, FAX,  OPUSH,  FTP, HS,  HF,  HFAG,  SAP,  
NAP,  GN, PANU, HCRP, HID, CIP, A2SRC, A2SNK, AVRCT, AVRTG, UDIUE, UDITE and SYNCML. 
 
       browse [--tree] [--raw] [--xml] [bdaddr] 
                 Browse all available services on the device specified by a Bluetooth address as a 
parameter. 
 
       records [--tree] [--raw] [--xml] bdaddr 
                 Retrieve all possible service records. 
 
       add [ --handle=N --channel=N ] 
                 Add a service to the local sdpd. 
You  can  specify a handle for this record using the --handle option. 
You can specify a channel to add the  service  using  the --channel option. 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 38 of 68 
 

 
       del record_handle 
                 Remove a service from the local sdpd. 
 
       get [--tree] [--raw] [--xml] [--bdaddr bdaddr] record_handle 
                 Retrieve a service from the local sdpd. 
 
       setattr record_handle attrib_id attrib_value 
                 Set or add an attribute to an SDP record. 
 
 
       setseq record_handle attrib_id attrib_values 
                 Set or add an attribute sequence to an SDP record. 
 
 
 

5.1.5 rfcomm 
 
rfcomm  is  used to set up, maintain, and inspect the RFCOMM configuration of the Bluetooth 
subsystem in the Linux kernel. If no command is given, or if the option -a is used, rfcomm prints 
information about the configured RFCOMM devices. 
 
 
Synopsis 
       rfcomm [ options ] < command > < dev > 
 
 
 
Options 
       -h     Gives a list of possible commands. 
 
       -a     Prints information about all configured RFCOMM devices. 
 
       -r     Switch TTY into raw mode (doesn't work with "bind"). 
 
       -f <file> 
              Specify alternate config file. 
 
       -i <hciX> | <bdaddr> 
              The command is applied to device -A Enable  authentication.   -E Enable  encryption.  -S 
Secure connection.  -M Become the master of a piconet.  hciX , which must be the name or the  
address  of an  installed  Bluetooth  device.  If not specified, the command will be use the first 
available Bluetooth device. 
 
       -A     Enable authentification 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 39 of 68 
 

 
       -E     Enable encryption 
 
       -S     Secure connection 
 
       -M     Become the master of a piconet 
 
       -L <seconds> 
              Set linger timeout 
 
Commands 
       show <dev> 
              Display the information about the specified device. 
 
       connect <dev> [bdaddr] [channel] 
              Connect the RFCOMM device to the remote Bluetooth device on the specified  channel.  If no 
channel is specified, it will use the channel number 1. If also the Bluetooth address is left out,  it tries 
to read the data from the config file. This command can be terminated with the key sequence CTRL-C. 
 
       listen <dev> [channel] [cmd] 
              Listen on a specified RFCOMM channel for  incoming  connections. If  no  channel  is 
specified, it will use the channel number 1, but a channel must be specified before cmd. If cmd is 
given, it will  be  executed  as soon as a client connects. When the child process terminates or the 
client disconnect,  the  command  will terminate.  Occurences of {} in cmd will be replaced by the 
name of the device used by the connection. This command can be terminated with the key sequence 
CTRL-C. 
 
       watch <dev> [channel] [cmd] 
              Watch  is identical to listen except that when the child process terminates or the client 
disconnect, the  command  will  restart listening with the same parameters. 
 
       bind <dev> [bdaddr] [channel] 
              This  binds  the RFCOMM device to a remote Bluetooth device. The command does not 
establish a connection to the remote device,  it only  creates  the  binding.  The connection will be 
established right after an application tries to open the RFCOMM  device.  If no channel number is 
specified, it uses the channel number 1. If the Bluetooth address is also left out, it  tries  to  read  the 
data from the config file. 
If all is specified for the RFCOMM device, then all devices that have bind yes set in the config will be 
bound. 
 
       release <dev> 
              This command releases a defined RFCOMM binding. 
If all is specified for the RFCOMM  device,  then  all  bindings will be removed. This command didn't 
care about the settings in the config file. 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 40 of 68 
 

6 Library setup 
 
It is possible to add the BT library on your development environment simply inserting the header file 
and the library, within the folder within the /opt/crosstools/telit/include/ and /opt/crosstools/telit/lib/ 
directories respectively: 
 

• Start the Linux console (Windows Start Menu  All Programs  Telit Development Platform 
 Console). 

• Copy the library typing 
cp   /mnt/windows/<PATH>/libBT.a   /opt/crosstools/telit/lib  

• Copy the header file typing 
cp   /mnt/windows/<PATH>/BT_lib.h   /opt/crosstools/telit/include 

 
where <PATH> is the windows folder where you have stored the new version of the library files. For 
example, if you store them within C:\Temp you have to digit 
  

cp   /mnt/windows/Temp/libBT.a   /opt/crosstools/telit/lib  
and 

cp   /mnt/windows/Temp/BT_lib.h   /opt/crosstools/telit/include 
 

 
 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 41 of 68 
 

 
 
 

6.1 How to Build a Client Application Project 
 
 
Open your  "Telit Customized Eclipse" starting from "Telit Development Platform". 
Create a New Project  "ARM uclibc C executable".  
See figure below. 
 

 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 42 of 68 
 

 
 
 
 
 
Open   new project Properties window end select C/C++ Build -> Setting. 
 
 
 
 
 

 
 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 43 of 68 
 

 
 
 
Add in the uclib C linker -> Libraries the following libraries: 
 

• libdbus-1.a    library search path:   /home/bluez/lib 
• libBT_lib.a     library search path:   /opt/crosstools/telit/lib 
• libpthread.so 

      

 
 
 
Click on "OK".    Now you are ready to develop you Bluetooth Application. 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 44 of 68 
 

7 Linux Bluetooth High Level APIs 
With Bluetooth High Level APIs it is possible to control Bluetooth module, manage generic Bluetooth 
connection and perform some advanced tasks. These APIs are based on BlueZ D-Bus services, which 
are exported through the system message bus. 
 
D-Bus is a message bus system which provides a simple way for applications to talk to one another. 
 
The following picture explains relations between Bluetooth High Level APIs, D-Bus and BlueZ: 
 
 

 
 
 
 
 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 45 of 68 
 

7.1 Description 
Bluetooth high level API Package consist of the following files: 
 

• BT_lib.h:  generic API header file; 
 

• libBT_lib.a:  Telit Bluetooth static Library; 
 

• BT_lib.conf:     Telit Bluetooth Library configuration file; 
 

 

7.1.1  Data Types 
 
 

7.1.1.1 BT_Boolean_t 
This type is an enum containing BT_True and BT_False values. 

 
typedef enum { 
 BT_False, 
  BT_True 
} BT_Boolean_t; 

 
 
 

7.1.1.2 BT_Return_Code_t 
This type is an enum containing codes for all errors that may occur during BT operations. Each 
function described in the next paragraph returns an error code.  
 
 
 
 

typedef enum { 
/* 0 */  BT_EXEC_OK, 
/* 1 */  BT_ERROR, 
/* 2 */  BT_HS_ERROR, 
/* 3 */  BT_HS_NOT_CREATED, 
/* 4 */  BT_HS_SIGNAL_NOT_RECEIVED, 
/* 5 */          BT_HS_CHECK_CALL_ERROR, 
/* 6 */  BT_HS_ANSWER_CALL_ERROR, 
/* 7 */  BT_HS_GSM_AT_CMD_ERROR, 
/* 8 */  BT_TIME_EXPIRED_ERROR, 
/* 9 */          BT_HS_NOT_CONNECTED, 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 46 of 68 
 

/* 10 */        BT_HS_NOT_PAIRED_ERROR, 
 /* 11 */         BT_AUDIO_SERV_NOT_RUNNING, 
  
 // Shared Errors (by BlueZ) 
 /* 12 */         BT_DEVICE_UNREACHABLE_ERROR, 
 /* 13 */         BT_ALREADY_CONNECTED_ERROR, 
 /* 14 */         BT_CONNECTION_ATTEMPT_FAILED_ERROR, 
 /* 15 */         BT_NOT_CONNECTED_ERROR, 
 /* 16 */         BT_IN_PROGRESS_ERROR, 
 /* 17 */         BT_INVALID_ARGUMENTS_ERROR, 
 /* 18 */         BT_OUT_OF_MEMORY_ERROR, 
 /* 19 */         BT_NOT_AVAILABLE_ERROR, 
 /* 20 */         BT_NOT_SUPPORTED_ERROR, 
 /* 21 */         BT_ALREADY_EXISTS_ERROR, 
 /* 22 */         BT_DOES_NOT_EXISTS_ERROR, 
 /* 23 */         BT_CANCELED_ERROR, 
 /* 24 */         BT_FAILED_ERROR, 
   
 // Hcid specific Errors (by hcid only) 
 /* 25 */         BT_NOT_READY_ERROR, 
 /* 26 */         BT_UNKNOWN_METHOD_ERROR, 
 /* 27 */         BT_NOT_AUTHORIZED_ERROR, 
 /* 28 */         BT_REJECTED_ERROR, 
 /* 29 */         BT_NO_SUCH_ADAPTER_ERROR, 
 /* 30 */         BT_NO_SUCH_SERVICE_ERROR, 
 /* 31 */         BT_REQUEST_DEFERRED_ERROR, 
 /* 32 */         BT_NOT_IN_PROGRESS_ERROR, 
 /* 33 */         BT_AUTHENTICATION_CANCELED_ERROR, 
 /* 34 */         BT_AUTHENTICATION_FAILED_ERROR, 
 /* 35 */         BT_AUTHENTICATION_TIMEOUT_ERROR, 
 /* 36 */         BT_AUTHENTICATION_REJECTED_ERROR, 
 /* 37 */         BT_REPEATED_ATTEMPTS_ERROR, 
 /* 38 */         BT_UNKNOWN_ERROR, 
 /* 39 */         DBUS_BUS_GET_ERROR, 
 /* 40 */         DBUS_MESSAGE_NEW_METHOD_CALL_ERROR_EMPTY_MSG, 
 /* 41 */         DBUS_MESSAGE_APPEND_ARGS_ERROR, 
 /* 42 */         DBUS_CONNECTION_SEND_ERROR, 
 /* 43 */         DBUS_BUS_SEND_WITH_REPLY_AND_BLOCK_ERROR, 
 /* 44 */         DBUS_BUS_ADD_MATCH_ERROR, 
 /* 45 */         DBUS_MESSAGE_GET_ARGS_ERROR, 
 /* 46 */         DBUS_UT_CONN_FREE_ERROR, 
 /* 47 */         DBUS_UNKNOWN_ERROR, 
 /* 48 */         BT_OUT_OF_RANGE, 
 /* 49 */         BT_OPEN_FILE_ERROR, 
 /* 50 */         BT_DBUS_CONNECTION_ERROR, 
 /* 51 */         BT_SAP_BRIDGE_START_ERROR, 
 /* 52 */         BT_SAP_BRIDGE_RUNNING_ERROR, 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 47 of 68 
 

 /* 53 */         BT_SAP_BRIDGE_STOP_ERROR, 
          /* 54 */         BT_SAP_GSM_STOP_ERROR, 
  
   /* 55 */          BT_VALUE_NOT_FOUND_ERROR, 
   /* 56 */         BT_DAEMONS_RUNNING_ERROR, 
   /* 57 */          BT_DAEMONS_START_ERROR, 
   /* 58 */         BT_SENDING_RING_ERROR, 
   /* 59 */          BT_STOP_RING_ERROR 
 
} BT_Return_Code_t; 

 
 

 
 

7.1.1.3 BT_Addr_t 
 
This type contains the Bluetooth address of a remote Bluetooth device. It should be in the following 
string form “XX:XX:XX:XX:XX:XX”.  
 

#define BT_Addr_t char* 
 

7.1.1.4 BT_Process_Id 
This type contains the "pid" of a process. 
         
         #define BT_Process_Id  int 

 

7.1.1.5 BT_Dev_Name_t 
 
This type contains the friendly name of a remote Bluetooth device. 

 
#define BT_Dev_Name_t char* 
 

7.1.1.6 BT_Passkey_t 
 
This type contains the passkey (Bluetooth PIN) associate with a remote Bluetooth device. 

 
#define BT_Passkey_t char* 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 48 of 68 
 

7.1.1.7 BT_Device_t 
 
This type is a struct containg basic information about a remote Bluetooth device. 
 

typedef struct BT_Device_t 
{ 
 BT_Addr_t addr; 
 BT_Dev_Name_t name; 
 BT_Passkey_t passkey; 
} BT_Device_t; 

 
 
 

7.1.1.8 BT_Service_t 
 
This type contains the name of a specific Bluetooth service. 

 
#define BT_Service_t char* 
 

 
 
 

7.1.1.9 BTList 
 
This type define a generic list. 
 

 
typedef struct _BTList 
 { 
 void *data; 
 struct _BTList *next; 
} BTList; 
 

 

7.1.1.10 BT_Services_List_t 
 
This data type will contain list of BT_Service_t. 
 

#define BT_Services_List_t BTList 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 49 of 68 
 

7.1.1.11 BT_Devices_List_t 
 
This data type will contain list of BT_Device_t. 
 

#define BT_Devices_List_t BTList 
 
 
 
 
 

7.1.2 Configuration Files 

7.1.2.1 bt_lib.conf 
It has to be moved in the /etc/bluetooth directory. It contains the BT_lib configuration values. It is 
classified in three main groups: 'General', 'Headset' and 'Sap'. 
'#' character indicates a comment line. 
 
[General] 
        At the moment it doesn't contains any value. 
 
[Headset] 
       It has to be chosen the port to send At command to the pro3 gsm module. Use "/dev/cmux3" if 
you are using the cmux ( to use headset with sap profile or just sap profile you have to )  or 
"/dev/ttyS3" if you don't need cmux to run your bluetooth application. 
 
[Sap] 
      In order to use Telit SAP Client feature, the cmux must be activated. The field “AtcommandPort”  
specifies the cmuxt virtual port used internally by BT_lib APIs to send AT Commands to GSM engine. 
The field “SAPmessagesPort” specifies the cmux virtual port used internally by BT_lib APIs to 
exchange Remote SIM data with the GSM engine. 
 

7.1.3 Linux Shell Script     

7.1.3.1 BT_Bluetooth_Start.sh 
  
Linux shell script "BT_Bluetooth_Start.sh" starts the Bluez end DBus daemons needed in order to call 
the BT_lib.api. The daemons started are "dbus-daemon", "hcid", "sdpd", "hciattach" and "auth-agent". 
It's up to the customer running or not running "cmux". 

7.1.3.2 BT_Bluetooth_Stop.sh      
Linux shell script "BT_Bluetooth_Stop.sh" stops DBus and Bluez daemons needed in order to call the 
BT_lib api. The processes stopped are "dbus-daemon", "hcid",  "sdpd", "hciattach" and "auth-agent". 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 50 of 68 
 

7.1.4 Functions 
 

7.1.4.1  Generic Bluetooth procedures 
char * BT_PrintLibVersion(void) 
 

7.1.4.1.1 BT_PrintLibVersion() 
This function print on the default standard output the current version of the BT_lib and returns a string  
which contains the info about version (Example 33.01.00). 
 
 
Prototype 
 

char*          BT_PrintLibVersion   (void) 
 
 
Parameters 
 

None                    
 
 
Return values 

 
 A string which contains information about the actual version of BT_lib. 
 

7.1.4.1.2 BT_Scan() 
This function starts the device discovery procedure. This includes an inquiry and an optional remote 
device name resolving.  
 
 
 
 
Prototype 
 

BT_Return_Code_t          BT_Scan   (BT_device_t  **info_device_scan, 
                                                               BT_Boolean_t name_resolving_enable_flag) 

 
 
Parameters 

<info_device_scan>                    It’s a pointer to an array of BT_device_t. It will contain 
                                                                information about remote devices in range. 

 
< name_resolving_enable_flag  >          It’s a boolean_t that enables/disables retrieve of  
        discoverable Bluetooth devices in range. 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 51 of 68 
 

 
 
Return values 

 
BT_EXEC_OK                                        Command correctly executed        
not BT_EXEC_OK                                 An unpredictable error occurred 

 
Example 
 
BT_Devices_List_t* devicesList = NULL; 
 
BT_Return_Code_t res = BT_EXEC_OK; 
 
res = BT_Scan(&devicesList, BT_True); 
 
BT_Devices_List_t *l; 
 
for (l = devicesList; l != NULL; l = l->next) 
{ 
        printf("...%s: ADDRESS: %s - NAME: %s\n",  
                                                               ((BT_Device_t*)(l->data))->addr, 
                                                               ((BT_Device_t*)(l->data))->name); 
} 
 
…….. 
…….. 
 
if (devicesList) 
       list_free(deviceslist); 
if (l) 
      list_free(l); 
 

7.1.4.1.3 BT_Pair_Device() 
This function creates a bonding with a remote Bluetooth device using a specific passkey.  
The passkey should be passed to this method as input parameter. If a link key for this adapter already 
exists, this method returns a “BT_EXEC_OK” instead of trying to create a new pairing. 
If no connection to the remote device exists, a low-level ACL connection must be created. 
 
Prototype 
 

BT_Return_Code_t      BT_Pair_Device (BT_Addr_t  *remote_dev_addr ,  
                                                                      BT_Passkey_t *remote_PASSKEY ) 

 
 
Parameters 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 52 of 68 
 

<remote_dev_addr>                    It’s a BT_Addr_t that contains the Bluetooth address of  
                                                            the remote Bluetooth device.  
 
<remote_PASSKEY>                          It’s a  BT_Passkey_t that contains the passkey (Bluetooth 
                                                             PIN) associated to the remote Bluetooth device. 
 

 
 
 
 
 
 
Return values 
 

BT_EXEC_OK                                          Command correctly executed. Pairing with the  
                                                                  remote device created. 
 

        not BT_EXEC_OK                                                           An unpredictable error occurred 
 
 
Example 
 
char btAddress[BT_ADDRESS_SIZE]; 
char btRemPassKey[BT_PASSKEY_SIZE]; 
 
BT_Return_Code_t res = BT_EXEC_OK; 
 
sprint(btAddress,"00:00:00:11:22:33"); 
sprint(btRemPassKey,"0000"); 
 
res = BT_Pair_Device(btAddress, btRemPassKey); 
 
 
 
 

7.1.4.1.4 BT_Unpair_Device() 
This function removes pairing with local device. For security reasons this includes removing the actual 
link key and also disconnecting any open connections for the remote device. 
 
 
Prototype 
 

BT_Return_Code_t      BT_Unpair_Device      (BT_Addr_t  remote_dev_addr  ) 
 
 
Parameters 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 53 of 68 
 

 
<remote_dev_addr>                      It’s a BT_Addr_t that contains the Bluetooth address 
                                                                of the remote Bluetooth device.  
 
NOTE : 
Please pay attention when removing the link key related to an active Bluetooth link. If it happens, 
the Bluetooth link will be lost, the related service will be stopped and a BT_FAILED_ERROR 
may be returned from the BT_unpair_Device() API. In order to avoid this behaviour, the service 
(like SAP or HSP) related to the Remote Bluetooth Device to unpair, should be stopped before 
performing the unpair procedure. 

 
 
Return values 
 

BT_EXEC_OK         Command correctly executed        
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 

 
Example 
 
char btAddress[BT_ADDRESS_SIZE]; 
 
BT_Return_Code_t res = BT_EXEC_OK; 
sprintf(btAddress,"00:00:00:11:22:33"); 
 
res = BT_Unpair_Device(btAddress); 
 
 

7.1.4.1.5 BT_Has_Bonding() 
 
This function returns BT_True if the remote Bluetooth device is bonded and BT_False if no link key is 
available. 
 
 
Prototype 
 

BT_Boolean_t      BT_Has_Bonding      (BT_Addr_t  remote_dev_addr,  BT_Return_Code_t* 
     return_error ) 

 
 
 
Parameters 
 

<remote_dev_addr>   It’s a BT_Addr_t that contains the Bluetooth address of the remote 
    Bluetooth device.  
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 54 of 68 
 

<return_error> It’s a pointer to the location where to put the error code returned by BlueZ. 
   Pass the NULL pointer if not interested on the reason of failure (Example  
    BT_INVALID_ARGUMENTS_ERROR). 
 

 
 
Return values 
 

BT_True          A bonding with remote Bluetooth device already exists. 
 
BT_False         No link key available for this remote device or an error occurs. 

 
Example 
 
char btAddress[BT_ADDRESS_SIZE]; 
 
BT_Return_Code_t res = BT_EXEC_OK; 
 
BT_Boolean_t hasBond = BT_False; 
 
sprintf(btAddress,"00:00:00:11:22:33"); 
 
hasBond = BT_Has_Bonding(btAddress,&res); 
 
printf("Has %s Bonding?    %d\n", btAddress, hasBond); 
 
 

7.1.4.1.6 BT_List_Bondings() 
 
This function gets a list of the Bluetooth Address of the paired devices with local device.  
 
 
Prototype 
 

BT_Return_Code_t   BT_List_Bondings  (BT_Addr_t  **remote_addresses, int* num_devices) 
 
 
Parameters 
 

<remote_addresses>                 It’s a pointer to an array of BT_Addr_t. It will contain the  
                                                              Bluetooth address of the remote Bluetooth devices 
                                                              paired with local Bluetooth adapter. 
 
<num>                          Number of remote Bluetooth devices paired with local Bluetooth adapter. 
 

 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 55 of 68 
 

 
Return values 
 

BT_EXEC_OK         Command correctly executed        
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 

 
 
Example 
 
 
BT_Addr_t  *remote_addresses; 
int remoteDevicesNum; 
int i; 
 
BT_Return_Code_t res = BT_EXEC_OK; 
 
res = BT_List_Bondings(&remote_addresses,&remoteDevicesNum); 
 
for (i=0;i<remoteDevicesNum;i++) 
 printf("Address: %s\n", remote_addresses[i]); 
 
…….. 
…….. 
 
for (i=0;i<remoteDevicesNum;i++){ 
    if remote_addresses[i] 
        free(remote_addresses[i]); 
} 
 
 

7.1.4.1.7 BT_Set_Local_Name() 
 
This function sets the local adapter name (friendly name). 
 
 
Prototype 
 

    BT_Return_Code_t  BT_Set_Local_Name  (BT_Dev_Name_t   local_name) 
 
Parameters 
 

<local_name>   It’s a BT_Dev_Name_t  that contains the friendly name to set.  
 
 

Return values 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 56 of 68 
 

 
BT_EXEC_OK         Command correctly executed        
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 

 
Example 
 
BT_Return_Code_t res = BT_EXEC_OK; 
char localName[50]; 
 
sprintf(localName,"BT-LocalDevice");      
 
res = BT_Set_Local_Name(localName); 
 
 

7.1.4.1.8 BT_Get_Local_Name() 
 
This function retrieves the local adapter name (friendly name). 
 
 
Prototype 
 

 BT_Return_Code_t  BT_Get_Local_Name  (BT_Dev_Name_t   *local_name) 
 
 
Parameters 
 

<local_name>  It’s a BT_Dev_Name_t pointer that will contain the friendly name retrieved. 
                               
 
 

Return values 
 

BT_EXEC_OK         Command correctly executed        
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 

 
 
Example 
 
BT_Dev_Name_t deviceName; 
BT_Return_Code_t res = BT_EXEC_OK; 
 
res = BT_Get_Local_Name(&deviceName); 
 
printf("Local  Device Name: %s\n", deviceName); 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 57 of 68 
 

 …….. 
…….. 
if (deviceName) 
     free(deviceName); 
 

7.1.4.1.9 BT_Get_Remote_Name() 
 
This function retrieves the name (friendly name) of the specified remote Bluetooth device. This method 
retrieves always a cached name and an error code is returned if the name is not in the cache. In order 
to update the cache, a BT_Scan() with name resolution or a BT_Browse_Services()  should be 
performed. 
 
 
Prototype 
 

 BT_Return_Code_t    BT_Get_Remote_Name    (BT_Addr_t  remote_dev_addr ,  
       BT_Dev_Name_t   *remote_name) 

 
Parameters 
 

<remote_dev_addr>                                    It’s a BT_Addr_t that contains the Bluetooth address 
                                                                   of the remote Bluetooth device. 
 
<remote_name>                              It’s It’s a BT_Dev_Name_t that will contain  
                                                                     the friendly name of the remote Bluetooth  
                                                                     device retrieved. 
 
 
 

Return values 
 
 

BT_EXEC_OK         Command correctly executed        
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 

 
 
Example 
 
 
BT_Return_Code_t res = BT_EXEC_OK; 
 
 
char btAddress[BT_ADDRESS_SIZE]; 
 
BT_Dev_Name_t remote_name; 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 58 of 68 
 

 
sprintf(btAddress,"00:00:00:11:22:33"); 
 
res = BT_Get_Remote_Name(btAddress, &remote_name); 
 
printf("BT_ADDRESS: %s - NAME: %s.\n", btAddress, remote_name); 
 
…….. 
…….. 
 
if  (remote_name) 
    free(remove_name); 
 
 

7.1.4.1.10 BT_Browse_Services ()      
 
This method will request the SDP database of a remote device and retrieve information about services 
available. 
Pay attention that you can perform a services Browsing of a remote device with security level "3" ( like 
headset ) only if the local device  has already executed a pair with that remote device. 
 
 
Prototype 
 
 BT_Return_Code_t  BT_Browse_Services   (BT_Addr_t remote_bt_addr,  
       BT_Services_List_t** services_list); 
 
Parameters 
 

<remote_address>  It’s a BT_Addr_t  that contains the Bluetooth address of the remote  
                                 Bluetooth device 
 
<services_list> It’s a pointer to a pointer to BT_Services_List_t that contains info about 
   browsed services.  
 
 
 
 

Return values 
 

BT_EXEC_OK         Command correctly executed        
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 

 
 
Example 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 59 of 68 
 

 
BT_Return_Code_t res = BT_EXEC_OK; 
BT_Services_List_t* services_list= NULL; 
 
res = BT_Browse_Services("00:18:88:66:9B:00",&services_list); 
 
BT_Services_List_t *l1; 
 
for (l1 = services_list; l1 != NULL; l1 = l1->next) 
{ 
      printf("...%s: SERVICE: %s\n", ((BT_Service_t)l1->data)); 
} 
 
……..    
…….. 
 
if (services_list=) 
       list_free(services_list=); 
if (l1) 
      list_free(l1); 
 
 
 
 

7.1.4.2  SAP Bluetooth Procedures 
 
 
 

7.1.4.2.1 BT_Start_SAP() 
 
This function creates a connection toward a remote SAP Server and starts Telit SAP Client inside 
GE863.  In order to start the Telit SAP Client inside the GSM engine, the cmux must be activated 
before call this method. Else an error code will be returned. 
 
Prototype 
 
 BT_Return_Code_t    BT_Start_SAP    (BT_Addr_t remote_dev,  BT_Passkey_t  
        remote_PASSKEY); 

     
 
 
 
Parameters 
 

<remote_dev >      It’s a BT_Addr_t that contains the Bluetooth address of the remote  



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 60 of 68 
 

                           SAP Server 
 
<remote_PASSKEY>   It’s a  BT_Passkey_t that contains the passkey (Bluetooth PIN) 
                                associated  to the SAP service.  
 
NOTE : 
In order to improve security, the SAP server may require a passkey longer than the actual 
passkey used during a previous pairing procedure. In this situation the remote_PASSKEY 
parameter is required, in order to avoid connection failure.  
Some SAP server will not ask again for a stronger passkey and reject the connection; in this 
situation an “unpair” procedure is required before a connection procedure toward SAP service. 
If the PRO3 has not been paired with the SAP Server yet, this parameter is required, in order to 
perform pairing procedure before connection to the service. If a pair with a strong passkey is 
already present between PRO3 and SAP server, the NULL value can be passed instead a valid 
remote passkey.  
 

 
Return values 
   

BT_EXEC_OK         Command correctly executed. Telit SAP Client is running.        
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 

 
 
Example 
 
char btAddress[BT_ADDRESS_SIZE]; 
char btRemPassKey[BT_PASSKEY_SIZE]; 
 
BT_Return_Code_t res = BT_EXEC_OK; 
 
sprintf(btAddress,"00:00:00:11:22:33"); 
sprintf(btRemPassKey,"1234567891234567"); 
 
res = BT_Start_SAP(btAddress, btRemPassKey); 
 
 

7.1.4.2.2 BT_Stop_SAP() 
 
This function starts the “Disconnect Initiated by the Client” procedure. If it goes successfully the 
RFcomm data channel, between the Client and the Server, shall be immediately disconnected and 
Telit SAP Client inside GE863-PRO3 will be stopped. 
 
 
Prototype 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 61 of 68 
 

 BT_Return_Code_t    BT_Stop_SAP    (BT_Addr_t remote_dev); 
 
Parameters 
 

<remote_dev>       It’s a BT_Addr_t that contains the Bluetooth address of the remote  
                           SAP Server 
 
 

Return values 
 

 
 
BT_EXEC_OK         Command correctly executed. Telit SAP Client is stopped.        
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 

 
 
Example 
 
char btAddress[BT_ADDRESS_SIZE]; 
 
BT_Return_Code_t res = BT_EXEC_OK; 
 
sprintf(btAddress,"00:00:00:11:22:33"); 
 
 
res  = BT_Stop_SAP(remote_dev); 
 

7.1.4.3  Headset Bluetooth Procedures 
 

7.1.4.3.1 BT_Headset_Start() 
This function has to be called before any of the following headset utilities. 
So, if you want to link a headset to your local Bluetooth device, you have to call BT_Headset_Start() 
and afterwards the function BT_Headset_Stop(). It executes a forked function in order to catch any 
Headset press button ( AT+CKPD ).    The remote Headset must have been already paired to the local 
device.   The int pid output parameter have to be used to call BT_Headset_Stop() function . 
 
Prototype 
     BT_Return_Code_t      BT_Headset_Start (BT_Addr_t remote_bt_addr,      
                                                                          BT_Passkey_t   remote_PASSKEY,int* pid) 
 
 
Parameters 
 

<remote_bt_addr>         It’s a BT_Addr_t that contains the Bluetooth address of the 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 62 of 68 
 

                                      remote Bluetooth device.  
 
<remote_PASSKEY >     It’s a BT_Passkey_t that contains the pin code to use in pairing 
                                      process. 
 
 
<pid>                                Forked process ID needed to kill the process at the end. 
 

 
 
Return values 
 

 
BT_EXEC_OK         Command correctly executed  
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 
 
 

Example 
 
char btAddress[BT_ADDRESS_SIZE]; 
char btRemPassKey[BT_PASSKEY_SIZE]; 
int pid; 
 
BT_Return_Code_t res = BT_EXEC_OK; 
 
sprint(btAddress,"00:00:00:11:22:33"); 
sprint(btRemPassKey,"0000"); 
 
res = BT_Headset_Start(btAddress, btRemPassKey,&pid);  
 
…….. 
…….. 
…….. 
 
res = BT_EXEC_OK; 
 
res = BT_Headset_Stop(pid); 
 

7.1.4.3.2 BT_Headset_Stop() 
 
This function has to be called when finished using Headset utilities. It kill the process forked with the 
BT_Headset_Start() function. 
 
Prototype 
     BT_Return_Code_t      BT_Headset_Stop (int pid) 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 63 of 68 
 

 
 
Parameters 
 

 
<pid>                               Forked process ID needed to kill the process. It's the value returned  
                                    by the BT_Headset_Start() function. 
 

 
 
 
 
Return values 
 
 

BT_EXEC_OK         Command correctly executed        
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 

 
Example 
 
// see BT_Headset_Start() Example 
 
……….. 
 
……...... 
 
res = BT_EXEC_OK; 
 
res = BT_Headset_Stop(pid); 
 
 
 

7.1.4.3.3 BT_Connect_Headset () 
This function connects the local device with a headset device.  All the preliminary steps (like SDP 
query) are internal. This function connects the local device to the HSP service on the remote device.  
The remote Headset must have been already paired to the local device.   If the headset is already 
connected, it doesn't do anything.  
 
 
 
Prototype 
 

BT_Return_Code_t  BT_Connect_Headset (BT_Addr_t remote_address , BT_Passkey_t   
                                                                                                                                pin_code) 

 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 64 of 68 
 

 
Parameters 
 

<remote_address>    It’s a BT_Addr_t that contains the Bluetooth address of the remote 
                                      Bluetooth device.  
 
<pin_code>                      It’s a BT_Passkey_t that contains the pin code to use in  
                                     pairing process. 
 

 
 
Return values 
 

 
BT_EXEC_OK         Command correctly executed, connection with headset device 

correctly established.       
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 

 
Example 
 
 
char btAddress[BT_ADDRESS_SIZE]; 
char btRemPassKey[BT_PASSKEY_SIZE]; 
 
BT_Return_Code_t res = BT_EXEC_OK; 
 
sprint(btAddress,"00:00:00:11:22:33"); 
sprint(btRemPassKey,"0000"); 
 
res = BT_Connect_Headset(btAddress, btRemPassKey); 
 
 
 

7.1.4.3.4 BT_Disconnect_Headset () 
This function disconnects from the HSP  service on the remote device and removes  all information 
related to the headset device.  If the headset is already disconnected, it doesn't do anything. 
 
 
Prototype 
 

BT_Return_Code_t   BT_Disconnect_Headset (BT_Addr_t remote_address,  
                                                                            BT_Passkey_t pin_code)                                                   
  

 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 65 of 68 
 

Parameters 
 

<remote_address>    It’s a BT_Addr_t that contains the Bluetooth address of the remote 
                                     Bluetooth device.  

 
 

<pin_code>                It’s a BT_Passkey_t that contains the pin code to use in  
                                     pairing process. 
 

 
Return values 

 
BT_EXEC_OK         Command correctly executed, headset device correctly disconnected and 
   removed 
        
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 

 
Example 
 
char btAddress[BT_ADDRESS_SIZE]; 
char btRemPassKey[BT_PASSKEY_SIZE]; 
 
BT_Return_Code_t res = BT_EXEC_OK; 
 
sprint(btAddress,"00:00:00:11:22:33"); 
sprint(btRemPassKey,"0000"); 
 
res = BT_Disconnect_Headset(btAddress, btRemPassKey); 
 
 
 

7.1.4.3.5 BT_Set_Speaker_Volume_Gain () 
This function set speaker volume gain for the remote BT_Addr_t specified in the parameter. It is 
provided only for device that support audio (like headset). The headset must be connected to the AG. 
 
 
Prototype 
 

BT_Return_Code_t  BT_Set_Speaker_Volume_Gain (BT_Addr_t remote_address, 
                                                                                      BT_Passkey_t  pin_code,  
                                                                                      unsigned short volume_gain) 

 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 66 of 68 
 

Parameters 
 

<remote_address>    It’s a BT_Addr_t that contains the Bluetooth address of the remote 
                                      Bluetooth device.  
 
<pin_code>               It’s a BT_Passkey_t that contains the pin code to use in pairing 
                                      process. 
 
<volume_gain>                It’s a number indicating speaker gain to set.  
 

 
 
Return values 
 

BT_EXEC_OK      Command correctly executed; volume gain correctly set for the 
    remote device 
 
!= ( BT_EXEC_OK )               An unpredictable error occurred 

 
Example 
 
int volumeGain = 0; 
char btAddress[BT_ADDRESS_SIZE]; 
char btRemPassKey[BT_PASSKEY_SIZE]; 
 
BT_Return_Code_t res = BT_EXEC_OK; 
 
printf("\n\n\nInsert New Speaker Volume Value (0..15)\n: "); 
 
scanf("%d", &volumeGain); 
    
res = BT_Set_Speaker_Volume_Gain(btAddress, btRemPassKey,(unsigned short) volumeGain); 
 
 
 

7.1.4.3.6 BT_Get_Speaker_Volume_Gain () 
This function gets speaker volume gain for the remote BT_Addr_t specified in the parameter.  
The headset must be connected to the AG. 
 
 
Prototype 
 

BT_Return_Code_t  BT_Get_Speaker_Volume_Gain (BT_Addr_t  remote_address, 
                                                                                       BT_Passkey_t  pin_code,  
                                                                                      unsigned short *volume_gain) 

 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 67 of 68 
 

 
 
Parameters 
 

<remote_address>       It’s a BT_Addr_t  that contains the Bluetooth address of the  
                                 remote Bluetooth device.  
 
<pin_code>        It’s a BT_Passkey_t that contains the pin code to use in  
                                pairing process. 
 
<volume_gain>     It’s a pointer to an unsigned short indicating speaker gain of the  
                                   remote  device 

 
Return values 
 

BT_EXEC_OK           Command correctly executed 
 
!= ( BT_EXEC_OK )                             An unpredictable error occurred 

 
 
Example 
 
unsigned short speakVolume; 
 
char btAddress[BT_ADDRESS_SIZE]; 
char btRemPassKey[BT_PASSKEY_SIZE]; 
 
BT_Return_Code_t res = BT_EXEC_OK; 
 
res = BT_Get_Speaker_Volume_Gain(btAddress, btRemPassKey,&speakVolume); 
 
 
printf("Speaker Volume Gain: %d\n", speakVolume); 
 
 
 



 
 
 
 

 
Bluetooth Library User Guide 

1VV0300790 Rev. 0 - 23/10/08 
 

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved  page 68 of 68 
 

8 List of acronyms and Abbreviation 
 

Acronym Explanation 
HSP Hands Free Profile 
GSM Global System for Mobile communications 

IP Internet Protocol 
SAP  Sim Access Profile 
PDU Protocol Data Unit 
PIN Personal Identification Number 
PPP Point to Point Protocol 
PUK Personal Unblocking Key 
SIM Subscriber Identity Module 
SMS Short Message Service 
TCP Transmission Control Protocol 

 
 
 
 
 
 
 
 


	Bluetooth Library User Guide
	Contents
	1 Introduction
	1.1 Scope
	1.2 Audience
	1.3 Contact Information, Support
	1.4 Open Source Licenses
	1.4.1 BlueZ

	1.5 Document Organization
	1.6 Text Conventions
	1.7 Terminology
	1.8 Related Documents
	1.9 Document History

	2 GE863-PRO³-Bluetooth architecture
	2.1 Hardware
	2.2 Software
	2.2.1 Linux OS overview
	2.2.2 Bluetooth Overview
	2.2.2.1  Sim Access Profile (SAP)
	2.2.2.2  Headset Profile (HSP)

	2.2.3 Linux Bluetooth software framework


	3 Bluetooth module setup
	3.1.1 Bluetooth Package Downloading
	3.1.2 Loading the kernel modules
	3.1.3 Attach Bluetooth module via UART HCI
	3.1.4 Attach Bluetooth module via USB interface
	3.1.4.1 Drivers for some specific Bluetooth modules
	3.1.5 Starting Bluetooth Upper Layers
	3.1.6  Auto-Setup at system startup


	4 Commands summary
	5 BlueZ Utilities
	5.1.1 hciattach
	5.1.2 hciconfig
	5.1.3 hcitool
	5.1.4 sdptool
	5.1.5 rfcomm

	6 Library setup
	6.1 How to Build a Client Application Project

	7 Linux Bluetooth High Level APIs
	7.1 Description
	7.1.1  Data Types
	7.1.1.1 BT_Boolean_t
	7.1.1.2 BT_Return_Code_t
	7.1.1.3 BT_Addr_t
	7.1.1.4 BT_Process_Id
	7.1.1.5 BT_Dev_Name_t
	7.1.1.6 BT_Passkey_t
	7.1.1.7 BT_Device_t
	7.1.1.8 BT_Service_t
	7.1.1.9 BTList
	7.1.1.10 BT_Services_List_t
	7.1.1.11 BT_Devices_List_t

	7.1.2 Configuration Files
	7.1.2.1 bt_lib.conf

	7.1.3 Linux Shell Script    
	7.1.3.1 BT_Bluetooth_Start.sh
	7.1.3.2 BT_Bluetooth_Stop.sh     

	7.1.4 Functions
	7.1.4.1  Generic Bluetooth procedures
	7.1.4.1.1 BT_PrintLibVersion()
	7.1.4.1.2 BT_Scan()
	7.1.4.1.3 BT_Pair_Device()
	7.1.4.1.4 BT_Unpair_Device()
	7.1.4.1.5 BT_Has_Bonding()
	7.1.4.1.6 BT_List_Bondings()
	7.1.4.1.7 BT_Set_Local_Name()
	7.1.4.1.8 BT_Get_Local_Name()
	7.1.4.1.9 BT_Get_Remote_Name()
	7.1.4.1.10 BT_Browse_Services ()     

	7.1.4.2  SAP Bluetooth Procedures
	7.1.4.2.1 BT_Start_SAP()
	7.1.4.2.2 BT_Stop_SAP()

	7.1.4.3  Headset Bluetooth Procedures
	7.1.4.3.1 BT_Headset_Start()
	7.1.4.3.2 BT_Headset_Stop()
	7.1.4.3.3 BT_Connect_Headset ()
	7.1.4.3.4 BT_Disconnect_Headset ()
	7.1.4.3.5 BT_Set_Speaker_Volume_Gain ()
	7.1.4.3.6 BT_Get_Speaker_Volume_Gain ()




	8 List of acronyms and Abbreviation


[image: image16.png][image: image17.png]

[image: image18.png]

Bluetooth Library User Guide


1VV0300790 Rev. 0 - 23/10/08



		Bluetooth Library User Guide  

For GE863-PRO3 with Linux APIs description



		1VV0300790 Rev. 0 - 23/10/08







[image: image19.jpg][image: image20.jpg][image: image21.jpg]

Disclaimer


The information contained in this document is the proprietary information of Telit Communications S.p.A. and its affiliates (“TELIT”). 


The contents are confidential and any disclosure to persons other than the officers, employees, agents or subcontractors of the owner or licensee of this document, without the prior written consent of Telit, is strictly prohibited.


Telit makes every effort to ensure the quality of the information it makes available. Notwithstanding the foregoing, Telit does not make any warranty as to the information contained herein, and does not accept any liability for any injury, loss or damage of any kind incurred by use of or reliance upon the information.


Telit disclaims any and all responsibility for the application of the devices characterized in this document, and notes that the application of the device must comply with the safety standards of the applicable country, and where applicable, with the relevant wiring rules.


Telit reserves the right to make modifications, additions and deletions to this document due to typographical errors, inaccurate information, or improvements to programs and/or equipment at any time and without notice. 


Such changes will, nevertheless be incorporated into new editions of this document.


All rights reserved.


© 2008 Telit Communications S.p.A. 


Applicable Products

		

[image: image1.png]



		GE863-PRO3  with Linux OS                 GE863PR3***-***


  


The suffix “***-***” depends on the module HW/SW 


configuration. Please contact your Telit representative  for


 details








Contents


61
Introduction



61.1
Scope



61.2
Audience



61.3
Contact Information, Support



71.4
Open Source Licenses



71.4.1
BlueZ



71.5
Document Organization



81.6
Text Conventions



81.7
Terminology



81.8
Related Documents



81.9
Document History



92
GE863-PRO³-Bluetooth architecture



92.1
Hardware



92.2
Software



102.2.1
Linux OS overview



112.2.2
Bluetooth Overview



122.2.2.1
Sim Access Profile (SAP)



132.2.2.2
Headset Profile (HSP)



132.2.3
Linux Bluetooth software framework



163
Bluetooth module setup



163.1.1
Bluetooth Package Downloading



193.1.2
Loading the kernel modules



203.1.3
Attach Bluetooth module via UART HCI



233.1.4
Attach Bluetooth module via USB interface



243.1.4.1
Drivers for some specific Bluetooth modules



243.1.5
Starting Bluetooth Upper Layers



253.1.6
Auto-Setup at system startup



274
Commands summary



305
BlueZ Utilities



305.1.1
hciattach



325.1.2
hciconfig



355.1.3
hcitool



375.1.4
sdptool



385.1.5
rfcomm



406
Library setup



416.1
How to Build a Client Application Project



447
Linux Bluetooth High Level APIs



457.1
Description



457.1.1
Data Types



457.1.1.1
BT_Boolean_t



457.1.1.2
BT_Return_Code_t



477.1.1.3
BT_Addr_t



477.1.1.4
BT_Process_Id



477.1.1.5
BT_Dev_Name_t



477.1.1.6
BT_Passkey_t



487.1.1.7
BT_Device_t



487.1.1.8
BT_Service_t



487.1.1.9
BTList



487.1.1.10
BT_Services_List_t



497.1.1.11
BT_Devices_List_t



497.1.2
Configuration Files



497.1.2.1
bt_lib.conf



497.1.3
Linux Shell Script



497.1.3.1
BT_Bluetooth_Start.sh



497.1.3.2
BT_Bluetooth_Stop.sh



507.1.4
Functions



507.1.4.1
Generic Bluetooth procedures



507.1.4.1.1
BT_PrintLibVersion()



507.1.4.1.2
BT_Scan()



517.1.4.1.3
BT_Pair_Device()



527.1.4.1.4
BT_Unpair_Device()



537.1.4.1.5
BT_Has_Bonding()



547.1.4.1.6
BT_List_Bondings()



557.1.4.1.7
BT_Set_Local_Name()



567.1.4.1.8
BT_Get_Local_Name()



577.1.4.1.9
BT_Get_Remote_Name()



587.1.4.1.10
BT_Browse_Services ()



597.1.4.2
SAP Bluetooth Procedures



597.1.4.2.1
BT_Start_SAP()



607.1.4.2.2
BT_Stop_SAP()



617.1.4.3
Headset Bluetooth Procedures



617.1.4.3.1
BT_Headset_Start()



627.1.4.3.2
BT_Headset_Stop()



637.1.4.3.3
BT_Connect_Headset ()



647.1.4.3.4
BT_Disconnect_Headset ()



657.1.4.3.5
BT_Set_Speaker_Volume_Gain ()



667.1.4.3.6
BT_Get_Speaker_Volume_Gain ()



688
List of acronyms and Abbreviation






1 [image: image22.jpg][image: image23.jpg][image: image24.jpg]Introduction

The GE863-PRO3 is an innovation to the quad-band, RoHS compliant GE863 product family which includes a powerful ARM9TM processor core exclusively dedicated to customer applications. The concept of collocating a powerful processor core with the GSM/GPRS engine allows developers to host their application directly. The PRO3 incorporates much of the necessary hardware for communicating microcontroller solutions, including the critical element of memory, significant simplification of the bill of material, vendor management, and logistics effort are achieved.


1.1 Scope


This user guide serves the following purpose:


· Describes GE863-PRO³-Bluetooth hardware and software architecture


· Describes how software developers can use the functions of the Bluetooth software package to configure and manage a Bluetooth module.

1.2 Audience


This User Guide is intended for software developers who develop applications on the GE863-PRO³ module that needs to configure and manage Bluetooth module.


1.3 Contact Information, Support


Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.


For general contact, technical support, report documentation errors and to order manuals, contact Telit’s Technical Support Center at:


TS-EMEA@telit.com or http://www.telit.com/en/products/technical-support-center/contact.php

Telit appreciates feedback from the users of our information.

1.4 Open Source Licenses


Bluetooth software package is made up of different Open Source Software licensed as follows.


1.4.1 BlueZ


BlueZ is an implementation of the Bluetooth™ wireless standards specifications for Linux. The code is licensed under the GNU General Public License (GPL) and is now included in the Linux 2.6 kernel series.

For further information about GNU License please have a look at http://www.gnu.org/copyleft/gpl.html.

1.5 Document Organization


This manual contains the following chapters:


· “Chapter 1, Introduction” provides a scope for this manual, target audience, technical contact information, and text conventions.


· “Chapter 2, GE863-PRO³-Bluetooth architecture” describes the general hardware and software architecture for Bluetooth-GE863-PRO3 system.


· “Chapter 3, Bluetooth module setup” describes how to downloading and installing the needed Bluetooth support modules and bluez and dbus packages.

· “Chapter 4, Commands summary” provides a list and some examples on the most commonly used shell commands for configuring Bluetooth module.


· “Chapter 5, BlueZ Utilities” provides a reference to the most used bluez commands.


· “Chapter 6, Library Setup” gives guidelines to setup your implementation project.


· “Chapter 7, Linux Bluetooth High Level APIs” describes the APIs that can be used by customer applications to configure and manage Bluetooth module from source code.

· "Chapter 8, Appendix" describes Bluetooth headset and sap profile architecture.

·  “Chapter 9, List of acronyms and Abbreviation” provides definition for all the acronyms and abbreviations used in this guide.


How to Use

If you are new to this product, it is highly recommended to start by reading through TelitGE863PRO3Linux_Development and TelitGE863PRO3Linux_SW_UserGuide manuals and this document in their entirety in order to understand the concepts and specific features provided by the built in software of the GE863-PRO3.


1.6 Text Conventions

This section lists the paragraph and font styles used for the various types of information presented in this user guide.


		Format

		Content



		Courier

		Linux shell commands at command prompt.





1.7 Terminology


In the following sections, the term “host” will refer to the computer where the development environment is running, while we’ll refer to the Pro3 as the target.


The term “Bluetooth module” will refer to Bluetooth  hardware connected to the PRO3. This hardware consists of radio, baseband and the link manager and will be found in Bluetooth chips, dongles and notebooks.


The term “local Bluetooth Adapter” will be used to refer to the Bluetooth module when it is connected to a remote Bluetooth device. 


1.8 Related Documents


The following documents are related to this user guide:

[1] Telit_GE863-PRO³_Hardware_User_Guide

[2] TelitGE863PRO3_EVK_UserGuide

[3] TelitGE863PRO3Linux_SW_UserGuide


[4] TelitGE863PRO3Linux_Development


1.9 Document History


		Revision

		Date

		Changes



		ISSUE #0

		23/10/08

		First Release





2 GE863-PRO³-Bluetooth architecture

2.1 Hardware


The BT module is connected and communicates with GE863-PRO³ through an UART interface. 

The PCM link connects BT chip to the DVI interface of the GSM module of GE863-PRO3 to transport the PCM audio data for the HS profile.


For further hardware information please refer to [1] , . 



2.2 Software


Below a high level description of Linux OS Architecture and the different software layers involved in the Bluetooth package to better understand how local Bluetooth Adapter can be configured and controlled by Telit GE863-PRO³.

2.2.1 Linux OS overview


The kernel is the central part of the GNU/Linux operating system: its main task is to manage system’s resources in order to make the hardware and the software to communicate. A kernel usually deals with process management (including inter-process communication), memory management and device management.


The Linux kernel belongs to the family of Unix-like operating system kernel; created in 1991, it has been developed in the years by a huge number of contributors worldwide, becoming one of the most common and versatile kernel for embedded systems.


Below there is a picture representing, from a high level perspective, the architecture of a GNU/Linux operating system.


[image: image2.jpg]

Two regions can be identified:

1) User space: where the user applications are executed.


2) Kernel space: where the kernel (with all its components such as device drivers) works.


These two regions are separated and have different memory address spaces; there are several methods for user/kernel interaction:


· Using the System Call Interface that connects to the kernel and provides the mechanism to communicate between the user-space application and the kernel through the C library.


· Using kernel calls directly from application code leaping over the C library.


· Using the virtual filesystem /proc.

The ordinary C library in Linux system is the glibc. Uclibc is a C library mainly targeted for developing embedded Linux systems; despite being much smaller than the glibc it almost has all its features (including shared libraries and threading), making easy to port applications from glibc to uclibc.


The Linux kernel architecture-independent code stays on the top of platform specific code for the GE863-PRO³ board: this code allows exploiting all the hardware features of the GE863-PRO³.


2.2.2 Bluetooth Overview


Bluetooth is a wireless protocol utilizing short-range communications technology facilitating both voice and data transmissions over short distances from fixed and/or mobile devices.


Bluetooth provides a way to connect and exchange information between devices such as mobile phones, telephones, laptops, personal computers, printers, GPS receivers, digital cameras, and video game consoles over a secure, globally unlicensed Industrial, Scientific, and Medical (ISM) 2.4 GHz short-range radio frequency bandwidth.


The specification is developed, published and promoted by the Bluetooth Special Interest Group (SIG). 

[image: image3.emf]Application


RFCOMM


L2CAP


HCI


Baseband


Bluetooth Radio


Link Manager (LM)


Audio


O


B


E


X


        AT


COMMANDS


SDP


TCS


TCP/IP


PPP




In order to use Bluetooth wireless technology, a device must be able to interpret certain Bluetooth profiles. The Profiles describe how the technology is used (i.e. how different parts of the specification can be used to fulfill a desired function for a Bluetooth device). Bluetooth profiles are general behaviors through which Bluetooth enabled devices communicate with other devices. Bluetooth technology defines a wide range of profiles that describe many different types of use cases.


2.2.2.1  Sim Access Profile (SAP)


The SIM Access Profile defines the protocols and procedures that shall be used to access a GSM SIM card via a Bluetooth link. 


For example, this profile allows devices such as car phones with built in GSM transceivers to connect to a SIM card in a Bluetooth enabled phone. Therefore the car phone itself does not require a separate SIM card. 


Furthermore the user can personalize his car embedded phone with data (like contacts, messages and so on) contained in his personal SIM card.


In order to ensure secure communication between Bluetooth devices, several security measures are mandatory.


2.2.2.2  Headset Profile (HSP)

The Headset Profile provides support for the popular Bluetooth Headsets to be used with mobile phones.


With this profile the headset can be wirelessly connected for the purposes of acting as the device’s audio input and output mechanism, providing full duplex audio. The headset increases the user’s mobility while maintaining call privacy.

2.2.3 Linux Bluetooth software framework

Linux Bluetooth package is made up of different components: 


· BlueZ – official Linux Bluetooth protocol stack

· BT_lib - Bluetooth High Level APIs


BlueZ provides kernel modules, libraries and utilities. It is composed by the following components:

· UART driver – Implements the UART transport layer

· BlueZ Core Layer – Provides a standard interface to the Bluetooth baseband controller and link manager services (host controller interface)

· L2CAP, SCO, RFCOMM - Bluetooth lower layers

· BlueZ Utilities – Provides some tools which simplify management of Bluetooth module

Bluetooth module is controlled via the Host Controller Interface (HCI) and for the communication  between the host stack and the Bluetooth module a specific host transport driver is used. 


BlueZ implements HCI and Bluetooth lower layer (like L2CAP, SCO, RFCOMM) inside the kernel. Upper Bluetooth protocol layers are implemented as libraries (like Service Discovery Protocol – SDP) and made available as shell command or service exported through the system message bus.

The image below shows architecture of the software framework used to configure and control Bluetooth module.

               [image: image4.emf]Bluetooth Applications


Bluetooth Hardware


BlueZ Core


   HCI


sockets


Kernel


space


User


space


  SCO


sockets


L2CAP


protocol


  Other


drivers


USB


driver


UART


 driver


BlueZ


utilities


Host Controller   Interface (HCI)


Berkley      Socket     Interface


Protocol    Interface


Driver   Interface


 - BlueZ components.




The following scheme represents the SW architecture of the system GE863-PRO3 together with the BT module:




3 Bluetooth module setup

3.1.1 Bluetooth Package Downloading


Before setting up Bluetooth module, the components of the Bluetooth Package must be downloaded onto GE863-PRO³ filesystem. 


If you don’t have Bluetooth Package yet please contact our technical assistance on the following email: TS-EMEA@telit.com.

Connect the GE863-PRO³ to your host system via serial cable (use Debug port of the EVK, for further details refer to document [2]). Open a terminal program (such as Hyperterminal or Procomm) on your host system and use for the connection the following parameters:


Bits per second: 115200


Data bits: 8


Parity: None


Stop bits: 1


Flow Control: None


Turn GE863-PRO³ on. Once the system startup has finished, the terminal will display the shell prompt as shown below.


[image: image5.jpg]

Start Colinux and make sure the Ethernet on USB connection via USB port is correctly configured as shown in paragraph 5 of [4] .


Now start Eclipse and download the following files onto GE863-PRO³ filesystem as shown in paragraph 7.2 of [4] :


· UART Driver for Bluetooth module:

· hci_uart.ko

· BlueZ Core Layer:

· bluetooth.ko


· Bluetooth lower layers:

· l2cap.ko


· rfcomm.ko

· sco.ko


· BlueZ Utilities:

· bluez/


· Bluetooth High level API:

· BT_lib/


In order to install the Bluetooth modules you have to execute the following steps:

Now create the kernel modules folders:

# mkdir /lib/modules/2.6.24-rc5-rt1/kernel/net


# mkdir /lib/modules/2.6.24-rc5-rt1/kernel/net/bluetooth


# mkdir /lib/modules/2.6.24-rc5-rt1/kernel/net/bluetooth/rfcomm


# mkdir /lib/modules/2.6.24-rc5-rt1/kernel/drivers/bluetooth


Now move the downloaded files from the download folder to the correct destination folder. 


Supposing you are into the download folder, type:


· For UART Driver:


# mv hci_uart.ko /lib/modules/2.6.24-rc5-rt1/kernel/drivers/bluetooth

· For BlueZ Core Layer:


# mv bluetooth.ko /lib/modules/2.6.24-rc5-rt1/kernel/net/bluetooth

· For Bluetooth lower layers:


# mv l2cap.ko /lib/modules/2.6.24-rc5-rt1/kernel/net/bluetooth


# mv sco.ko /lib/modules/2.6.24-rc5-rt1/kernel/net/bluetooth


# mv rfcomm.ko /lib/modules/2.6.24-rc5-rt1/kernel/net/bluetooth/rfcomm


· For BlueZ Utilities :


# mv bluez/lib/libexpat.so.1 /lib


# mv bluez/lib/libdbus-1.so.3 /lib


# mv bluez/lib/libbluetooth.so.2 /lib


# mv bluez/ROOT_DIR_FILES/* /etc


# rm –r bluez/ROOT_DIR_FILES

# mv bluez /home

# mkdir /var/lib/dbus


# mkdir /var/run/dbus


# mv bluez /home


(Please, make sure all bluez utilities have the right execution privileges.)


· Update PATH environment variable:


# export PATH=$PATH:./:/home/bluez/bin:/home/bluez/sbin

Finally add the messagebus user to the user group:


# adduser -SDH messagebus


3.1.2 Loading the kernel modules

Go to kernel/ folder and load the kernel modules as shown below:

# insmod /lib/modules/2.6.24-rc5-rt1/kernel/net/Bluetooth/bluetooth.ko

# insmod /lib/modules/2.6.24-rc5-rt1/kernel/net/Bluetooth/l2cap.ko

# insmod /lib/modules/2.6.24-rc5-rt1/kernel/net/Bluetooth/rfcomm/rfcomm.ko

# insmod /lib/modules/2.6.24-rc5-rt1/kernel/net/Bluetooth/sco.ko

# insmod /lib/modules/2.6.24-rc5-rt1/kernel//drivers/Bluetooth/hci_uart.ko

[image: image6.png]

Once the kernel modules has been successfully loaded, Bluetooth module can be attached to the system and upper layers of the Bluetooth protocol stack can be started.

3.1.3 Attach Bluetooth module via UART HCI

After loading kernel modules is possible to attach one (or more) Bluetooth module to the system. For example, if a CSR chip is used, type the following commands to start the Bluetooth module.

#hciattach –pt 10 ttyS1 csr 115200 flow


#hciconfig hci0 up

According with the sintax of the hciattach utility (refer to paragraph 5.1.1) changing the “type” option different Bluetooth modules can be used.

Example: in order to use an Ericsson based module the following command lines should be used:


#hciattach –pt 10 ttyS1 ericsson 115200 flow


#hciconfig hci0 up

Else, for unknown Bluetooth module vendor that supports HCI UART interface, type:


#hciattach –pt 10 ttyS1 any 115200 flow


#hciconfig hci0 up

Pay attention to set the additional parameters of the “hciattach” (like speed, control flow etc…) in accord with the desired Bluetooth module.

Once started the Bluetooth module, to check its status, type: 


#hciconfig –a

[image: image7.png]

Once Bluetooth module is attached to the system, basic Bluetooth features are available using BlueZ Utilities from the shell. 

For example it is possible to perform a scan for remote Bluetooth devices in range.


[image: image8.png]

It is also possible to set some parameter of the Bluetooth module. 


The following example shows how to set the friendly-name of the local device.


[image: image9.png]

To make also available Bluetooth High Level APIs, the upper layer of the Bluetooth protocol stack should be started.

3.1.4 Attach Bluetooth module via USB interface


The “hci_uart.ko” kernel module is a driver for Bluetooth modules which implement the HCI via UART interface. In order to use a Bluetooth module, which implements the HCI via USB interface, the “hci_usb.ko” kernel module should be used instead of “hci_uart.ko”.

Moreover, the USB support must be properly installed and running on the PRO3 (“usb-core” and “ohci_hcd” kernel modules should be loaded).

Bluetooth USB devices get initialized automatically when they are plugged in; if it does not happen, they can be brought up manually with the hciconfig command :


#hciconfig hci0 up


3.1.4.1 Drivers for some specific Bluetooth modules

BlueZ supports a wide range of Bluetooth devices through the Host Control Interface (HCI). This interface provides a uniform method of accessing the Bluetooth module capabilities.

In order to be compatible with BlueZ, a bluetooth module must export the HCI .


The HCI can be exposed through different physical bus which are supported by Linux using a specific driver for each one. These drivers are included in the Linux kernel sources. 

Once compiled with the Bluetooth support, these drivers can be found under the “lib/modules/kernel_version/kernel/drivers/bluetooth/” directory of the kernel binaries.

Example:

· hci_uart  :  Bluetooth HCI UART driver.


· hci_usb.ko  :  HCI USB driver.


· hci_vhci.ko   :   Bluetooth virtual HCI driver.

· bcm203x.ko  :  Broadcom Blutonium firmware driver.


· bfusb.ko  :  AVM BlueFRITZ! USB driver.


· bpa10x.ko  :  Digianswer Bluetooth USB driver.


· btsdio.ko   :  Generic Bluetooth SDIO driver.


Choose the driver in accord with the desired Bluetooth module.


3.1.5 Starting Bluetooth Upper Layers


Before starting Bluetooth Upper Layers, the D-Bus application must be in running. If not yet started type the following commands:


# rm /var/run/dbus/*

#dbus-uuidgen –-ensure 

#dbus-daemon –-system


Once the D-Bus has been actived it is possible to start the Bluetooth daemons:


#hcid –n &


#sdpd –n &


[image: image10.png]

Now Bluetooth High Level APIs are available. Using them, the BLUETOOTH MODULE can be controlled from source.

3.1.6  Auto-Setup at system startup


The shell script “BT_Bluetooth_Start.sh” (provided by Telit) will perform all the necessary steps in order to initialize the Bluetooth module and run BlueZ correctly. 

This script refers to a configuration with only a CSR Bluetooth module connected through a UART interface. If a different Bluetooth device should be used, change the line:


hciattach -pt 10 /dev/ttyS1 csr 115200 flow

in accord with the desired Bluetooth module (as explained in the paragraphs 3.1.3 , 3.1.4 and 3.1.4.1).


If the upper layers of BlueZ are not necessaries, the following instructions can be used instead of the “BT_Bluetooth_Start.sh” script :


hciattach -pt 10 /dev/ttyS1 csr 115200 flow


hciconfig hci0 up

Once completed Bluetooth operations, the shell script “BT_Bluetooth_Stop.sh” (provided by Telit) can be used in order to stop the BlueZ framework in the right way.

Refer to paragraph 7.1.3 for more details about these scripts.

4 Commands summary


There are mainly two possible ways to configure and control the Bluetooth module: shell commands (BlueZ Utilities) and source code using Bluetooth High Level APIs.


BlueZ Utilities (hciconfig, hcitool, sdptool, rfcomm) provide simple Linux shell commands that can be used to set some specific parameters of the Bluetooth module and perform basic Bluetooth functions.


Customer applications using Bluetooth High Level APIs, can perform almost the same operations plus some advanced and more complex tasks.

The table below shows examples of the most commonly used shell commands and Bluetooth High Level APIs.


		Functionality

		Shell Commands


(BlueZ Utilities)

		High Level APIs



		

		Enable page and inquiry scan (discoverable)

		hciconfig hci0 piscan

		



		

		Disable page and inquiry scan (not discoverable)

		hciconfig hci0 noscan

		



		

		Set local name to My_name

		hciconfig hci0 name My_name

		BT_Set_Local_Name()



		

		Get local name

		hciconfig hci0 name

		BT_Get_Local_Name()



		      Bluez


  Bluetooth

  Daemons


    Manag.




		Start bluez daemons

		dbus-daemon

		BT_Bluetooth_Start()



		

		

		hcid

		



		

		

		sdpd

		



		

		

		hciattach

		



		

		Stop bluez daemons

		

		BT_Bluetooth_Stop()



		

		

		

		



		

		

		

		



		

		

		

		



		Bluetooth Connection Manag

		Inquire remote devices (with name resolution)

		hcitool -i hci0 inq

		BT_Scan()



		

		Display active baseband connections

		hcitool -i hci0 con

		



		

		Retrieve Remote device name

		

		BT_Get_Remote_Name()



		

		Look up if a device has bonding

		

		BT_Has_Bonding()



		

		List devices bonded

		

		BT_List_Bondings()



		

		Create the bonding

		

		BT_Pair_Device()



		

		Remove the bonding

		

		BT_Unpair_Device()



		Bluetooth Service Manag

		Browse all available services on the remote device specified

		sdptool browse 00:0C:78:32:00:64

		BT_Browse_Services()



		

		Search for a specific service

		sdptool search SP

		



		

		Connect a remote device to a specific service

		

		BT_Connect_Services()



		

		Disconnect a remote device from a spec. serv

		

		BT_Disconnect_Services()



		  Bluetooth


    SAP


  Manag.




		Create a Sap connection

		

		BT_Start_SAP()



		

		Remove a Sap connection

		

		BT_Stop_SAP()



		 Bluetooth


 Headset


  Manag.




		Connect a headset device

		

		BT_Connect_Headset()



		

		Disconnect a headset device

		

		BT_Disconnect_Headset()



		

		Set audio speaker volume

		

		BT_Set_Volume_Gain()



		

		Get audio speaker volume

		

		BT_Get_Volume_Gain()





All the shell commands seen above can be used from source code performing the "system" system call (i.e.  system("hciconfig hci0 piscan");  ).


5 BlueZ Utilities

BlueZ Utilities (BU) is a set of tools that allow to configure and manage Bluetooth module by linux command shell.


BlueZ Utilities package includes the following executables:


· hciattach: attaches serial devices via UART HCI to BlueZ stack;

· hciconfig: configures Bluetooth module;

· hcitool: configures Bluetooth connections;


· sdptool: controls and interrogates SDP servers;


· rfcomm: manages the RFCOMM configuration of the local Bluetooth adapter.


BlueZ Utilities are part of BlueZ package, please have a look to paragraph  1.4.1 for information about BlueZ License.


The following subparagraphs describe BU commands as shown in man pages. 

5.1.1 hciattach


Hciattach is used to attach a serial UART to the Bluetooth stack as HCI transport interface.

Synopsis

       hciattach [-n] [-p] [-t timeout] tty type|id speed flow bdaddr

Options

       -n     Don't detach from controlling terminal.


       -p     Print the PID when detaching.


       -t timeout


              Specify an initialization timeout.  (Default is 5 seconds.)


       tty    This specifies the serial device to attach. A leading  /dev  can be omitted. Examples: /dev/ttyS1 ttyS2


       type|id


              The type or id of the Bluetooth device that is to be attached, like vendor or other device specific identifier. Currently  sup- ported types are


              type   description


              any    Unspecified   HCI_UART   interface,  no  vendor  specific


                     options


              ericsson


                     Ericsson based modules


              digi   Digianswer based cards


              xircom Xircom PCMCIA cards: Credit Card Adapter  and  Real  Port


                     Adapter


              csr    CSR  Casira  serial  adapter  or BrainBoxes serial dongle


                     (BL642)


              bboxes BrainBoxes PCMCIA card (BL620)


              swave  Silicon Wave kits


              bcsp   Serial adapters using CSR chips with BCSP serial protocol


       Supported IDs are (manufacturer id, product id)


              0x0105, 0x080a


                     Xircom  PCMCIA  cards:  Credit Card Adapter and Real Port


                     Adapter


              0x0160, 0x0002


                     BrainBoxes PCMCIA card (BL620)


       speed  The speed specifies the UART speed to use. Baudrates higher than 115.200bps requires vendor specific initializations that are not implemented for all types of devices. In general the following speeds are supported:


9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600


Supported  vendor devices are automatically initialized to their respective best settings.


       flow   If the keyword flow is appended to  the  list  of  options  then hardware  flow control is forced on the serial link ( CRTSCTS ). All above mentioned device types have flow set by default. To force no flow control use noflow instead.


       bdaddr The bdaddr specifies the Bluetooth Address to use.  Some devices (like the STLC2500) do not store the Bluetooth address in hard-ware memory.  Instead it must be uploaded during the initialization process. If this argument is specified, then the address will be used to initialize the device.  Otherwise, a default address will be used.

5.1.2 hciconfig


hciconfig  is used to configure Bluetooth devices.  hciX is the name of a Bluetooth device installed in the system. If hciX is not given, hci-onfig prints name and basic information about all the Bluetooth devices installed in the system. If hciX is given but no command is given, it prints basic information on device hciX only. Basic information is interface type, BD address, ACL MTU, SCO MTU, flags (up, init, running, raw, page scan enabled, inquiry scan enabled, inquiry, authentication enabled, encryption enabled).

Synopsis


       hciconfig -h


       hciconfig [-a]


       hciconfig [-a] [command [command parameters]]

Options

       -h, --help


              Gives a list of possible commands.


       -a, --all


              Other than the basic info, print  features,  packet  type,  link


              policy, link mode, name, class, version.


Parameters

       up     Open and initialize HCI device.


       down   Close HCI device.


       reset  Reset HCI device.


       rstat  Reset statistic counters.


       auth   Enable authentication (sets device to security mode 3).


       noauth Disable authentication.


       encrypt

              Enable encryption (sets device to security mode 3).


       noencrypt

              Disable encryption.


       secmgr Enable security manager (current kernel support is limited).


       nosecmgr

              Disable security manager.


       piscan Enable page and inquiry scan.


       noscan Disable page and inquiry scan.


       iscan  Enable inquiry scan, disable page scan.


       pscan  Enable page scan, disable inquiry scan.


       ptype [type]


              Without specifying type, displays the current packet types. Otherwise, all the packet types specified by type are set.  type  is  a  comma-separated list of packet types, where the possible packet types are DM1, DM3, DM5, DH1, DH3, DH5, HV1, HV2, HV3.


       name [name]


              Without specifying, prints local name. Otherwise, sets local name to name.


       class [class]


              Without specifying, prints class of device. Otherwise, sets class of device to class. class is a 24-bit hex  number  describing the class of  device, 


       voice [voice]


              Without specifying, prints voice setting. Otherwise, sets voice setting  to  voice.   voice  is  a 16-bit hex number describing the voice setting.


       iac [iac]


              Without specifying iac, prints the current IAC setting. Otherwise, sets the IAC to iac.


       inqtpl [level]


              Without specifying level, prints out the current inquiry transmit power level. Otherwise, sets inquiry transmit power level to level.


       inqmode [mode]


              Without specifying mode, prints out the current  inquiry  mode.  Otherwise, sets inquiry mode to mode.


       inqdata [data]


              Without specifying name,  prints out the current inquiry data. Otherwise, sets inquiry data to data.


       inqtype [type]


              Without specifying type, prints out the current inquiry scan  type.  Otherwise, sets inquiry scan type to type.


       inqparams [win:int]


              Without specifying win:int, prints inquiry scan window and interval. Otherwise, sets inquiry scan window to win  slots  and  inquiry  scan interval to int slots.


       pageparms [win:int]


              Without specifying win:int,  prints page scan window and interval. Otherwise, sets page scan window to win slots and page scan  interval to int slots.


       pageto [to]


              Without specifying to, prints page timeout. Otherwise, sets page timeout to.I to slots.


       afhmode [mode]


              Without specifying mode, prints out the current AFH mode.  Otherwise, sets AFH mode to mode.


       sspmode [mode]


              Without specifying mode, prints out the current Simple Pairing mode. Otherwise, sets Simple Pairing mode to mode.


       aclmtu mtu:pkt


              Sets ACL MTU to to mtu bytes and ACL buffer size to pkt packets.


       scomtu mtu:pkt


              Sets SCO MTU to mtu bytes and SCO buffer size to pkt packets.


       putkey <bdaddr>


              This command stores the link key for bdaddr on the device.


       delkey <bdaddr>


              This  command  deletes  the  stored link key for bdaddr from the device.


       oobdata

              Display local OOB data.


       commands

              Display supported commands.


       features

              Display device features.


       version

              Display version information.


       revision

              Display revision information.


       lm [mode]


              Without specifying mode , prints link mode.  The modes MASTER, SLAVE mean, respectively, to ask to become master or to remain slave when a connection request comes in. 

The mode ACCEPT means that the baseband  connections will be accepted even if there are no listening AF_BLUETOOTH sockets.


The mode NONE sets link policy  to  the  default  behavior  of remaining  slave  and  not  accepting  baseband connections when there are  no  listening  AF_BLUETOOTH  sockets. 

5.1.3 hcitool


hcitool  is  used to configure Bluetooth connections and send some special command to Bluetooth devices. If no command is given, or if the option -h is used, hcitool prints some usage information and exits.


Synopsis

       hcitool [-h]


       hcitool [-i <hciX>] [command [command parameters]]

Options

       -h     Gives a list of possible commands


       -i <hciX>


              The command is applied to device hciX , which must be the name of an installed Bluetooth device. If not specified, the command will be sent to the first available Bluetooth device.


Parameters


       dev    Display local devices


       inq    Inquire  remote  devices.  For each discovered device, Bluetooth device address, clock offset and class are printed.


       scan   Inquire remote devices. For each discovered device, device name are printed.


       name <bdaddr>


              Print  device  name  of  remote  device  with  Bluetooth address bdaddr.


       info <bdaddr>


              Print device name, version and supported features of remote device with Bluetooth address bdaddr.


       spinq  Start  periodic inquiry process. No inquiry results are printed.


       epinq  Exit periodic inquiry process.


       cmd <ogf> <ocf> [parameters]


              Submit an arbitrary HCI command to local device.  ogf,  ocf  and parameters are hexadecimal bytes.


       con    Display active baseband connections


       cc [--role=m|s] [--pkt-type=<ptype>] <bdaddr> Create baseband connection to remote device with Bluetooth address bdaddr.  Option --pkt-type specifies a list of allowed packet types.   <ptype> is a comma-separated  list of packet types, where the possible packet types are DM1, DM3, DM5, DH1, DH3,  DH5, HV1, HV2, HV3.  Default is to allow all packet types. Option --role can have value m (do not allow role switch, stay master) or s (allow role switch, become slave if the peer asks to become master). Default is m.


       dc <bdaddr>


              Delete baseband connection from remote device with Bluetooth address bdaddr.


       sr <bdaddr> <role>


              Switch role for the baseband connection from the remote device to master or slave.


       cpt <bdaddr> <packet types>


              Change packet types for baseband connection to device with Bluetooth address bdaddr.  packet types is a comma-separated list of packet types, where the possible packet types are DM1, DM3, DM5, DH1, DH3, DH5, HV1, HV2, HV3.


       rssi <bdaddr>


              Display received signal strength information for the connection to the device with Bluetooth address bdaddr.


       lq <bdaddr>


              Display link quality for the connection to the device with Bluetooth address bdaddr.


       tpl <bdaddr> [type]


              Display power level transmission for the connection to the device with Bluetooth address bdaddr.  The type can be 0 for the current power level in transmission (which is default) or 1 for the maximum power level in transmission.


       afh <bdaddr>


              Display AFH channel map for the connection to  the  device  with Bluetooth address bdaddr.


       lst <bdaddr> [value]


              With no value, displays link supervision timeout for the connection to the device with Bluetooth address bdaddr.  If value is given, sets the link supervision timeout for that connection to value slots, or to infinite if value is 0.


       auth <bdaddr>


              Request authentication of the device  with  Bluetooth  address bdaddr.


       enc <bdaddr> [encrypt enable]


              Enable or  disable the encryption for the device with Bluetooth address bdaddr.


       key <bdaddr>


              Change the connection link key for  the  device  with  Bluetooth address bdaddr.


       clkoff <bdaddr>


              Read  the  clock  offset  for  the device with Bluetooth address bdaddr.


       clock [bdaddr] [which clock]


              Read the clock for the device  with  Bluetooth  address  bdaddr. The clock can be 0 for the local clock or 1 for the piconet clock (which is default).

5.1.4 sdptool


sdptool  provides the interface for performing SDP queries on Bluetooth devices, and administering a local sdpd.

Synopsis

       sdptool [options]  {command}  [command parameters ...]

Parameters


       The following commands are available.  In all  cases  bdaddr  specifies the  device to search or browse.  If local is used for bdaddr, then the local sdpd is searched.


       Services are identified and manipulated  with  a  4-byte  record_handle (NOT  the  service  name).  To find a service's record_handle, look for the "Service RecHandle" line in the search or browse results


       search [--bdaddr bdaddr] [--tree] [--raw] [--xml] service_name

 Search for services.


        Known service names are DID, SP, DUN, LAN, FAX,  OPUSH,  FTP, HS,  HF,  HFAG,  SAP,  NAP,  GN, PANU, HCRP, HID, CIP, A2SRC, A2SNK, AVRCT, AVRTG, UDIUE, UDITE and SYNCML.


       browse [--tree] [--raw] [--xml] [bdaddr]


                 Browse all available services on the device specified by a Bluetooth address as a parameter.


       records [--tree] [--raw] [--xml] bdaddr


                 Retrieve all possible service records.


       add [ --handle=N --channel=N ]


                 Add a service to the local sdpd.


You  can  specify a handle for this record using the --handle option.


You can specify a channel to add the  service  using  the --channel option.

       del record_handle

                 Remove a service from the local sdpd.


       get [--tree] [--raw] [--xml] [--bdaddr bdaddr] record_handle


                 Retrieve a service from the local sdpd.


       setattr record_handle attrib_id attrib_value


                 Set or add an attribute to an SDP record.


       setseq record_handle attrib_id attrib_values


                 Set or add an attribute sequence to an SDP record.

5.1.5 rfcomm


rfcomm  is  used to set up, maintain, and inspect the RFCOMM configuration of the Bluetooth subsystem in the Linux kernel. If no command is given, or if the option -a is used, rfcomm prints information about the configured RFCOMM devices.

Synopsis

       rfcomm [ options ] < command > < dev >


Options

       -h     Gives a list of possible commands.


       -a     Prints information about all configured RFCOMM devices.


       -r     Switch TTY into raw mode (doesn't work with "bind").


       -f <file>


              Specify alternate config file.


       -i <hciX> | <bdaddr>


              The command is applied to device -A Enable  authentication.   -E Enable  encryption.  -S Secure connection.  -M Become the master of a piconet.  hciX , which must be the name or the  address  of an  installed  Bluetooth  device.  If not specified, the command will be use the first available Bluetooth device.


       -A     Enable authentification


       -E     Enable encryption


       -S     Secure connection


       -M     Become the master of a piconet


       -L <seconds>


              Set linger timeout


Commands

       show <dev>


              Display the information about the specified device.


       connect <dev> [bdaddr] [channel]


              Connect the RFCOMM device to the remote Bluetooth device on the specified  channel.  If no channel is specified, it will use the channel number 1. If also the Bluetooth address is left out,  it tries to read the data from the config file. This command can be terminated with the key sequence CTRL-C.


       listen <dev> [channel] [cmd]


              Listen on a specified RFCOMM channel for  incoming  connections. If  no  channel  is specified, it will use the channel number 1, but a channel must be specified before cmd. If cmd is given, it will  be  executed  as soon as a client connects. When the child process terminates or the client disconnect,  the  command  will terminate.  Occurences of {} in cmd will be replaced by the name of the device used by the connection. This command can be terminated with the key sequence CTRL-C.


       watch <dev> [channel] [cmd]


              Watch  is identical to listen except that when the child process terminates or the client disconnect, the  command  will  restart listening with the same parameters.


       bind <dev> [bdaddr] [channel]


              This  binds  the RFCOMM device to a remote Bluetooth device. The command does not establish a connection to the remote device,  it only  creates  the  binding.  The connection will be established right after an application tries to open the RFCOMM  device.  If no channel number is specified, it uses the channel number 1. If the Bluetooth address is also left out, it  tries  to  read  the data from the config file.


If all is specified for the RFCOMM device, then all devices that have bind yes set in the config will be bound.


       release <dev>


              This command releases a defined RFCOMM binding.


If all is specified for the RFCOMM  device,  then  all  bindings will be removed. This command didn't care about the settings in the config file.

6 Library setup


It is possible to add the BT library on your development environment simply inserting the header file and the library, within the folder within the /opt/crosstools/telit/include/ and /opt/crosstools/telit/lib/ directories respectively:


· Start the Linux console (Windows Start Menu ( All Programs ( Telit Development Platform ( Console).


· Copy the library typing


cp   /mnt/windows/<PATH>/libBT.a   /opt/crosstools/telit/lib 


· Copy the header file typing


cp   /mnt/windows/<PATH>/BT_lib.h   /opt/crosstools/telit/include


where <PATH> is the windows folder where you have stored the new version of the library files. For example, if you store them within C:\Temp you have to digit


cp   /mnt/windows/Temp/libBT.a   /opt/crosstools/telit/lib 


and


cp   /mnt/windows/Temp/BT_lib.h   /opt/crosstools/telit/include


[image: image11.jpg]

6.1 How to Build a Client Application Project


Open your  "Telit Customized Eclipse" starting from "Telit Development Platform".

Create a New Project  "ARM uclibc C executable". 


See figure below.


[image: image12.png]

Open   new project Properties window end select C/C++ Build -> Setting.


[image: image13.png]

Add in the uclib C linker -> Libraries the following libraries:


· libdbus-1.a    library search path:   /home/bluez/lib


· libBT_lib.a     library search path:   /opt/crosstools/telit/lib


· libpthread.so

[image: image14.png]

Click on "OK".    Now you are ready to develop you Bluetooth Application.

7 Linux Bluetooth High Level APIs


With Bluetooth High Level APIs it is possible to control Bluetooth module, manage generic Bluetooth connection and perform some advanced tasks. These APIs are based on BlueZ D-Bus services, which are exported through the system message bus.

D-Bus is a message bus system which provides a simple way for applications to talk to one another.

The following picture explains relations between Bluetooth High Level APIs, D-Bus and BlueZ:

[image: image15.png]

7.1 Description


Bluetooth high level API Package consist of the following files:


· BT_lib.h:  generic API header file;

· libBT_lib.a:  Telit Bluetooth static Library;


· BT_lib.conf:     Telit Bluetooth Library configuration file;


7.1.1  Data Types

7.1.1.1 BT_Boolean_t


This type is an enum containing BT_True and BT_False values.


typedef enum {


BT_False,

 
BT_True

} BT_Boolean_t;


7.1.1.2 BT_Return_Code_t


This type is an enum containing codes for all errors that may occur during BT operations. Each function described in the next paragraph returns an error code. 

typedef enum {


/* 0 */ 
BT_EXEC_OK,


/* 1 */ 
BT_ERROR,


/* 2 */ 
BT_HS_ERROR,


/* 3 */ 
BT_HS_NOT_CREATED,


/* 4 */ 
BT_HS_SIGNAL_NOT_RECEIVED,


/* 5 */          BT_HS_CHECK_CALL_ERROR,


/* 6 */ 
BT_HS_ANSWER_CALL_ERROR,


/* 7 */ 
BT_HS_GSM_AT_CMD_ERROR,


/* 8 */ 
BT_TIME_EXPIRED_ERROR,


/* 9 */          BT_HS_NOT_CONNECTED,


/* 10 */        BT_HS_NOT_PAIRED_ERROR,



/* 11 */         BT_AUDIO_SERV_NOT_RUNNING,



// Shared Errors (by BlueZ)



/* 12 */         BT_DEVICE_UNREACHABLE_ERROR,



/* 13 */         BT_ALREADY_CONNECTED_ERROR,



/* 14 */         BT_CONNECTION_ATTEMPT_FAILED_ERROR,



/* 15 */         BT_NOT_CONNECTED_ERROR,



/* 16 */         BT_IN_PROGRESS_ERROR,



/* 17 */         BT_INVALID_ARGUMENTS_ERROR,



/* 18 */         BT_OUT_OF_MEMORY_ERROR,



/* 19 */         BT_NOT_AVAILABLE_ERROR,



/* 20 */         BT_NOT_SUPPORTED_ERROR,



/* 21 */         BT_ALREADY_EXISTS_ERROR,



/* 22 */         BT_DOES_NOT_EXISTS_ERROR,



/* 23 */         BT_CANCELED_ERROR,



/* 24 */         BT_FAILED_ERROR,



// Hcid specific Errors (by hcid only)



/* 25 */         BT_NOT_READY_ERROR,



/* 26 */         BT_UNKNOWN_METHOD_ERROR,



/* 27 */         BT_NOT_AUTHORIZED_ERROR,



/* 28 */         BT_REJECTED_ERROR,



/* 29 */         BT_NO_SUCH_ADAPTER_ERROR,



/* 30 */         BT_NO_SUCH_SERVICE_ERROR,



/* 31 */         BT_REQUEST_DEFERRED_ERROR,



/* 32 */         BT_NOT_IN_PROGRESS_ERROR,



/* 33 */         BT_AUTHENTICATION_CANCELED_ERROR,



/* 34 */         BT_AUTHENTICATION_FAILED_ERROR,



/* 35 */         BT_AUTHENTICATION_TIMEOUT_ERROR,



/* 36 */         BT_AUTHENTICATION_REJECTED_ERROR,



/* 37 */         BT_REPEATED_ATTEMPTS_ERROR,



/* 38 */         BT_UNKNOWN_ERROR,



/* 39 */         DBUS_BUS_GET_ERROR,



/* 40 */         DBUS_MESSAGE_NEW_METHOD_CALL_ERROR_EMPTY_MSG,



/* 41 */         DBUS_MESSAGE_APPEND_ARGS_ERROR,



/* 42 */         DBUS_CONNECTION_SEND_ERROR,



/* 43 */         DBUS_BUS_SEND_WITH_REPLY_AND_BLOCK_ERROR,



/* 44 */         DBUS_BUS_ADD_MATCH_ERROR,



/* 45 */         DBUS_MESSAGE_GET_ARGS_ERROR,



/* 46 */         DBUS_UT_CONN_FREE_ERROR,



/* 47 */         DBUS_UNKNOWN_ERROR,



/* 48 */         BT_OUT_OF_RANGE,



/* 49 */         BT_OPEN_FILE_ERROR,



/* 50 */         BT_DBUS_CONNECTION_ERROR,



/* 51 */         BT_SAP_BRIDGE_START_ERROR,



/* 52 */         BT_SAP_BRIDGE_RUNNING_ERROR,



/* 53 */         BT_SAP_BRIDGE_STOP_ERROR,

          /* 54 */         BT_SAP_GSM_STOP_ERROR,

   /* 55 */          BT_VALUE_NOT_FOUND_ERROR,


   /* 56 */         BT_DAEMONS_RUNNING_ERROR,


   /* 57 */          BT_DAEMONS_START_ERROR,


   /* 58 */         BT_SENDING_RING_ERROR,


   /* 59 */          BT_STOP_RING_ERROR

} BT_Return_Code_t;


7.1.1.3 BT_Addr_t


This type contains the Bluetooth address of a remote Bluetooth device. It should be in the following string form “XX:XX:XX:XX:XX:XX”. 

#define BT_Addr_t char*

7.1.1.4 BT_Process_Id

This type contains the "pid" of a process.


         #define BT_Process_Id  int

7.1.1.5 BT_Dev_Name_t


This type contains the friendly name of a remote Bluetooth device.

#define BT_Dev_Name_t char*


7.1.1.6 BT_Passkey_t


This type contains the passkey (Bluetooth PIN) associate with a remote Bluetooth device.

#define BT_Passkey_t char*


7.1.1.7 BT_Device_t


This type is a struct containg basic information about a remote Bluetooth device.

typedef struct BT_Device_t


{



BT_Addr_t addr;



BT_Dev_Name_t name;



BT_Passkey_t passkey;


} BT_Device_t;

7.1.1.8 BT_Service_t


This type contains the name of a specific Bluetooth service.

#define BT_Service_t char*


7.1.1.9 BTList

This type define a generic list.

typedef struct _BTList

 {



void *data;



struct _BTList *next;


} BTList;


7.1.1.10 BT_Services_List_t


This data type will contain list of BT_Service_t.


#define BT_Services_List_t BTList


7.1.1.11 BT_Devices_List_t


This data type will contain list of BT_Device_t.


#define BT_Devices_List_t BTList


7.1.2 Configuration Files


7.1.2.1 bt_lib.conf


It has to be moved in the /etc/bluetooth directory. It contains the BT_lib configuration values. It is classified in three main groups: 'General', 'Headset' and 'Sap'.

'#' character indicates a comment line.


[General]


        At the moment it doesn't contains any value.


[Headset]


       It has to be chosen the port to send At command to the pro3 gsm module. Use "/dev/cmux3" if you are using the cmux ( to use headset with sap profile or just sap profile you have to )  or "/dev/ttyS3" if you don't need cmux to run your bluetooth application.


[Sap]


      In order to use Telit SAP Client feature, the cmux must be activated. The field “AtcommandPort”  specifies the cmuxt virtual port used internally by BT_lib APIs to send AT Commands to GSM engine. The field “SAPmessagesPort” specifies the cmux virtual port used internally by BT_lib APIs to exchange Remote SIM data with the GSM engine.

7.1.3 Linux Shell Script    

7.1.3.1 BT_Bluetooth_Start.sh


Linux shell script "BT_Bluetooth_Start.sh" starts the Bluez end DBus daemons needed in order to call the BT_lib.api. The daemons started are "dbus-daemon", "hcid", "sdpd", "hciattach" and "auth-agent".


It's up to the customer running or not running "cmux".

7.1.3.2 BT_Bluetooth_Stop.sh     


Linux shell script "BT_Bluetooth_Stop.sh" stops DBus and Bluez daemons needed in order to call the BT_lib api. The processes stopped are "dbus-daemon", "hcid",  "sdpd", "hciattach" and "auth-agent".

7.1.4 Functions


7.1.4.1  Generic Bluetooth procedures

char * BT_PrintLibVersion(void)


7.1.4.1.1 BT_PrintLibVersion()


This function print on the default standard output the current version of the BT_lib and returns a string 


which contains the info about version (Example 33.01.00).

Prototype


char*          BT_PrintLibVersion   (void)


Parameters

None
                  


Return values



A string which contains information about the actual version of BT_lib.

7.1.4.1.2 BT_Scan()


This function starts the device discovery procedure. This includes an inquiry and an optional remote device name resolving. 

Prototype


BT_Return_Code_t          BT_Scan   (BT_device_t  **info_device_scan,


                                                               BT_Boolean_t name_resolving_enable_flag)


Parameters

<info_device_scan> 
                  It’s a pointer to an array of BT_device_t. It will contain


                                                                information about remote devices in range.

< name_resolving_enable_flag  >          It’s a boolean_t that enables/disables retrieve of 





   discoverable Bluetooth devices in range.


Return values


BT_EXEC_OK                                        Command correctly executed       


not BT_EXEC_OK                                 An unpredictable error occurred


Example

BT_Devices_List_t* devicesList = NULL;


BT_Return_Code_t res = BT_EXEC_OK;


res = BT_Scan(&devicesList, BT_True);


BT_Devices_List_t *l;


for (l = devicesList; l != NULL; l = l->next)


{


        printf("...%s: ADDRESS: %s - NAME: %s\n", 

                                                               ((BT_Device_t*)(l->data))->addr,

                                                               ((BT_Device_t*)(l->data))->name);


}

……..


……..


if (devicesList)


       list_free(deviceslist);


if (l)


      list_free(l);

7.1.4.1.3 BT_Pair_Device()


This function creates a bonding with a remote Bluetooth device using a specific passkey. 

The passkey should be passed to this method as input parameter. If a link key for this adapter already exists, this method returns a “BT_EXEC_OK” instead of trying to create a new pairing.


If no connection to the remote device exists, a low-level ACL connection must be created.


Prototype


BT_Return_Code_t      BT_Pair_Device (BT_Addr_t  *remote_dev_addr , 

                                                                      BT_Passkey_t *remote_PASSKEY )


Parameters


<remote_dev_addr>                   
It’s a BT_Addr_t that contains the Bluetooth address of 


                                                            the remote Bluetooth device. 


<remote_PASSKEY>                          It’s a  BT_Passkey_t that contains the passkey (Bluetooth


                                                             PIN) associated to the remote Bluetooth device.


Return values

BT_EXEC_OK                                          Command correctly executed. Pairing with the 


                                                                  remote device created.


        not BT_EXEC_OK                                                           An unpredictable error occurred


Example

char btAddress[BT_ADDRESS_SIZE];


char btRemPassKey[BT_PASSKEY_SIZE];

BT_Return_Code_t res = BT_EXEC_OK;

sprint(btAddress,"00:00:00:11:22:33");


sprint(btRemPassKey,"0000");


res = BT_Pair_Device(btAddress, btRemPassKey);

7.1.4.1.4 BT_Unpair_Device()


This function removes pairing with local device. For security reasons this includes removing the actual link key and also disconnecting any open connections for the remote device.


Prototype


BT_Return_Code_t      BT_Unpair_Device      (BT_Addr_t  remote_dev_addr  )


Parameters


<remote_dev_addr>   
                  It’s a BT_Addr_t that contains the Bluetooth address


                                                                of the remote Bluetooth device. 


NOTE :

Please pay attention when removing the link key related to an active Bluetooth link. If it happens, the Bluetooth link will be lost, the related service will be stopped and a BT_FAILED_ERROR may be returned from the BT_unpair_Device() API. In order to avoid this behaviour, the service (like SAP or HSP) related to the Remote Bluetooth Device to unpair, should be stopped before performing the unpair procedure.

Return values

BT_EXEC_OK       
 Command correctly executed       


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example


char btAddress[BT_ADDRESS_SIZE];


BT_Return_Code_t res = BT_EXEC_OK;

sprintf(btAddress,"00:00:00:11:22:33");


res = BT_Unpair_Device(btAddress);

7.1.4.1.5 BT_Has_Bonding()


This function returns BT_True if the remote Bluetooth device is bonded and BT_False if no link key is available.

Prototype


BT_Boolean_t      BT_Has_Bonding      (BT_Addr_t  remote_dev_addr,  BT_Return_Code_t* 




return_error )


Parameters


<remote_dev_addr>  
It’s a BT_Addr_t that contains the Bluetooth address of the remote 



Bluetooth device. 


<return_error>
It’s a pointer to the location where to put the error code returned by BlueZ. 


Pass the NULL pointer if not interested on the reason of failure (Example  



BT_INVALID_ARGUMENTS_ERROR).

Return values

BT_True          A bonding with remote Bluetooth device already exists.


BT_False         No link key available for this remote device or an error occurs.

Example

char btAddress[BT_ADDRESS_SIZE];


BT_Return_Code_t res = BT_EXEC_OK;

BT_Boolean_t hasBond = BT_False;


sprintf(btAddress,"00:00:00:11:22:33");


hasBond = BT_Has_Bonding(btAddress,&res);

printf("Has %s Bonding?    %d\n", btAddress, hasBond);


7.1.4.1.6 BT_List_Bondings()


This function gets a list of the Bluetooth Address of the paired devices with local device. 


Prototype


BT_Return_Code_t   BT_List_Bondings  (BT_Addr_t  **remote_addresses, int* num_devices)


Parameters


<remote_addresses> 
               It’s a pointer to an array of BT_Addr_t. It will contain the 


                                                              Bluetooth address of the remote Bluetooth devices


                                                              paired with local Bluetooth adapter.


<num>                          Number of remote Bluetooth devices paired with local Bluetooth adapter.


Return values


BT_EXEC_OK       
 Command correctly executed       


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example

BT_Addr_t  *remote_addresses;


int remoteDevicesNum;

int i;


BT_Return_Code_t res = BT_EXEC_OK;

res = BT_List_Bondings(&remote_addresses,&remoteDevicesNum);


for (i=0;i<remoteDevicesNum;i++)



printf("Address: %s\n", remote_addresses[i]);

……..

……..


for (i=0;i<remoteDevicesNum;i++){


    if remote_addresses[i]

        free(remote_addresses[i]);


}

7.1.4.1.7 BT_Set_Local_Name()


This function sets the local adapter name (friendly name).


Prototype


    BT_Return_Code_t  BT_Set_Local_Name  (BT_Dev_Name_t   local_name)


Parameters


<local_name>  
It’s a BT_Dev_Name_t  that contains the friendly name to set. 


Return values


BT_EXEC_OK       
 Command correctly executed       


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example


BT_Return_Code_t res = BT_EXEC_OK;

char localName[50];

sprintf(localName,"BT-LocalDevice");







res = BT_Set_Local_Name(localName);

7.1.4.1.8 BT_Get_Local_Name()


This function retrieves the local adapter name (friendly name).


Prototype


BT_Return_Code_t  BT_Get_Local_Name  (BT_Dev_Name_t   *local_name)


Parameters


<local_name> 
It’s a BT_Dev_Name_t pointer that will contain the friendly name retrieved.

Return values


BT_EXEC_OK       
 Command correctly executed       


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example


BT_Dev_Name_t deviceName;

BT_Return_Code_t res = BT_EXEC_OK;

res = BT_Get_Local_Name(&deviceName);

printf("Local  Device Name: %s\n", deviceName);


 ……..

……..


if (deviceName)


     free(deviceName);


7.1.4.1.9 BT_Get_Remote_Name()


This function retrieves the name (friendly name) of the specified remote Bluetooth device. This method retrieves always a cached name and an error code is returned if the name is not in the cache. In order to update the cache, a BT_Scan() with name resolution or a BT_Browse_Services()  should be performed.

Prototype


BT_Return_Code_t    BT_Get_Remote_Name    (BT_Addr_t  remote_dev_addr , 







BT_Dev_Name_t   *remote_name)


Parameters


<remote_dev_addr>
                                   It’s a BT_Addr_t that contains the Bluetooth address


                                                                   of the remote Bluetooth device.


<remote_name>                     
        It’s It’s a BT_Dev_Name_t that will contain 


                                                                     the friendly name of the remote Bluetooth 


                                                                     device retrieved.


Return values


BT_EXEC_OK       
 Command correctly executed       


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example

BT_Return_Code_t res = BT_EXEC_OK;

char btAddress[BT_ADDRESS_SIZE];

BT_Dev_Name_t remote_name;

sprintf(btAddress,"00:00:00:11:22:33");


res = BT_Get_Remote_Name(btAddress, &remote_name);

printf("BT_ADDRESS: %s - NAME: %s.\n", btAddress, remote_name);

……..


……..


if  (remote_name)


    free(remove_name);


7.1.4.1.10 BT_Browse_Services ()     

This method will request the SDP database of a remote device and retrieve information about services available.

Pay attention that you can perform a services Browsing of a remote device with security level "3" ( like headset ) only if the local device  has already executed a pair with that remote device.

Prototype



BT_Return_Code_t 
BT_Browse_Services   (BT_Addr_t remote_bt_addr, 







BT_Services_List_t** services_list);


Parameters


<remote_address> 
It’s a BT_Addr_t  that contains the Bluetooth address of the remote 

                                 Bluetooth device


<services_list>
It’s a pointer to a pointer to BT_Services_List_t that contains info about 


browsed services. 


Return values


BT_EXEC_OK       
 Command correctly executed       


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example

BT_Return_Code_t res = BT_EXEC_OK;

BT_Services_List_t* services_list= NULL;

res = BT_Browse_Services("00:18:88:66:9B:00",&services_list);

BT_Services_List_t *l1;


for (l1 = services_list; l1 != NULL; l1 = l1->next)


{


      printf("...%s: SERVICE: %s\n", ((BT_Service_t)l1->data));


}

……..




……..

if (services_list=)


       list_free(services_list=);


if (l1)


      list_free(l1);

7.1.4.2  SAP Bluetooth Procedures

7.1.4.2.1 BT_Start_SAP()


This function creates a connection toward a remote SAP Server and starts Telit SAP Client inside GE863.  In order to start the Telit SAP Client inside the GSM engine, the cmux must be activated before call this method. Else an error code will be returned.

Prototype



BT_Return_Code_t    BT_Start_SAP    (BT_Addr_t remote_dev,  BT_Passkey_t 








remote_PASSKEY);


Parameters


<remote_dev >      It’s a BT_Addr_t that contains the Bluetooth address of the remote 

                           SAP Server


<remote_PASSKEY>   It’s a  BT_Passkey_t that contains the passkey (Bluetooth PIN)

                                associated 
to the SAP service. 

NOTE :


In order to improve security, the SAP server may require a passkey longer than the actual passkey used during a previous pairing procedure. In this situation the remote_PASSKEY parameter is required, in order to avoid connection failure. 


Some SAP server will not ask again for a stronger passkey and reject the connection; in this situation an “unpair” procedure is required before a connection procedure toward SAP service.


If the PRO3 has not been paired with the SAP Server yet, this parameter is required, in order to perform pairing procedure before connection to the service. If a pair with a strong passkey is already present between PRO3 and SAP server, the NULL value can be passed instead a valid remote passkey. 

Return values


BT_EXEC_OK       
 Command correctly executed. Telit SAP Client is running.       


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example

char btAddress[BT_ADDRESS_SIZE];


char btRemPassKey[BT_PASSKEY_SIZE];

BT_Return_Code_t res = BT_EXEC_OK;

sprintf(btAddress,"00:00:00:11:22:33");


sprintf(btRemPassKey,"1234567891234567");


res = BT_Start_SAP(btAddress, btRemPassKey);

7.1.4.2.2 BT_Stop_SAP()


This function starts the “Disconnect Initiated by the Client” procedure. If it goes successfully the RFcomm data channel, between the Client and the Server, shall be immediately disconnected and Telit SAP Client inside GE863-PRO3 will be stopped.


Prototype


BT_Return_Code_t    BT_Stop_SAP    (BT_Addr_t remote_dev);

Parameters


<remote_dev>       It’s a BT_Addr_t that contains the Bluetooth address of the remote 

                           SAP Server


Return values

BT_EXEC_OK       
 Command correctly executed. Telit SAP Client is stopped.       


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example


char btAddress[BT_ADDRESS_SIZE];


BT_Return_Code_t res = BT_EXEC_OK;

sprintf(btAddress,"00:00:00:11:22:33");


res  = BT_Stop_SAP(remote_dev);

7.1.4.3  Headset Bluetooth Procedures

7.1.4.3.1 BT_Headset_Start()

This function has to be called before any of the following headset utilities.

So, if you want to link a headset to your local Bluetooth device, you have to call BT_Headset_Start() and afterwards the function BT_Headset_Stop(). It executes a forked function in order to catch any Headset press button ( AT+CKPD ).    The remote Headset must have been already paired to the local device.   The int pid output parameter have to be used to call BT_Headset_Stop() function .

Prototype


     BT_Return_Code_t      BT_Headset_Start (BT_Addr_t remote_bt_addr,     


                                                                          BT_Passkey_t   remote_PASSKEY,int* pid)


Parameters


<remote_bt_addr>    
    It’s a BT_Addr_t that contains the Bluetooth address of the


                                      remote Bluetooth device. 


<remote_PASSKEY >     It’s a BT_Passkey_t that contains the pin code to use in pairing

                                      process.


<pid>                                Forked process ID needed to kill the process at the end.


Return values


BT_EXEC_OK       
 Command correctly executed 


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example

char btAddress[BT_ADDRESS_SIZE];


char btRemPassKey[BT_PASSKEY_SIZE];

int pid;


BT_Return_Code_t res = BT_EXEC_OK;

sprint(btAddress,"00:00:00:11:22:33");


sprint(btRemPassKey,"0000");


res = BT_Headset_Start(btAddress, btRemPassKey,&pid);


……..


……..


……..


res = BT_EXEC_OK;


res = BT_Headset_Stop(pid);

7.1.4.3.2 BT_Headset_Stop()

This function has to be called when finished using Headset utilities. It kill the process forked with the


BT_Headset_Start() function.


Prototype


     BT_Return_Code_t      BT_Headset_Stop (int pid)


Parameters


<pid>                               Forked process ID needed to kill the process. It's the value returned 


                                    by the BT_Headset_Start() function.


Return values


BT_EXEC_OK       
 Command correctly executed       


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example

// see BT_Headset_Start() Example


………..


……......


res = BT_EXEC_OK;


res = BT_Headset_Stop(pid);

7.1.4.3.3 BT_Connect_Headset ()


This function connects the local device with a headset device.  All the preliminary steps (like SDP query) are internal. This function connects the local device to the HSP service on the remote device.  The remote Headset must have been already paired to the local device.   If the headset is already connected, it doesn't do anything. 

Prototype


BT_Return_Code_t  BT_Connect_Headset (BT_Addr_t remote_address , BT_Passkey_t  


                                                                                                                                pin_code)


Parameters


<remote_address>   
It’s a BT_Addr_t that contains the Bluetooth address of the remote

                                      Bluetooth device. 


<pin_code>                     
It’s a BT_Passkey_t that contains the pin code to use in 

                                     pairing process.


Return values


BT_EXEC_OK       
 Command correctly executed, connection with headset device correctly established.      


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example

char btAddress[BT_ADDRESS_SIZE];


char btRemPassKey[BT_PASSKEY_SIZE];

BT_Return_Code_t res = BT_EXEC_OK;

sprint(btAddress,"00:00:00:11:22:33");


sprint(btRemPassKey,"0000");


res = BT_Connect_Headset(btAddress, btRemPassKey);

7.1.4.3.4 BT_Disconnect_Headset ()


This function disconnects from the HSP  service on the remote device and removes  all information related to the headset device.  If the headset is already disconnected, it doesn't do anything.

Prototype


BT_Return_Code_t   BT_Disconnect_Headset (BT_Addr_t remote_address, 

                                                                            BT_Passkey_t pin_code)                                                                                                               


Parameters


<remote_address>   
It’s a BT_Addr_t that contains the Bluetooth address of the remote

                                     Bluetooth device. 


<pin_code>               
It’s a BT_Passkey_t that contains the pin code to use in 

                                     pairing process.


Return values


BT_EXEC_OK       
 Command correctly executed, headset device correctly disconnected and 


removed


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example

char btAddress[BT_ADDRESS_SIZE];


char btRemPassKey[BT_PASSKEY_SIZE];

BT_Return_Code_t res = BT_EXEC_OK;

sprint(btAddress,"00:00:00:11:22:33");


sprint(btRemPassKey,"0000");


res = BT_Disconnect_Headset(btAddress, btRemPassKey);

7.1.4.3.5 BT_Set_Speaker_Volume_Gain ()


This function set speaker volume gain for the remote BT_Addr_t specified in the parameter. It is provided only for device that support audio (like headset). The headset must be connected to the AG.

Prototype


BT_Return_Code_t  BT_Set_Speaker_Volume_Gain (BT_Addr_t remote_address,

                                                                                      BT_Passkey_t  pin_code, 

                                                                                      unsigned short volume_gain)


Parameters


<remote_address>   
It’s a BT_Addr_t that contains the Bluetooth address of the remote

                                      Bluetooth device. 


<pin_code>
              It’s a BT_Passkey_t that contains the pin code to use in pairing

                                      process.


<volume_gain>               
It’s a number indicating speaker gain to set. 

Return values


BT_EXEC_OK    

Command correctly executed; volume gain correctly set for the 



remote device


!= ( BT_EXEC_OK )               An unpredictable error occurred


Example

int volumeGain = 0;

char btAddress[BT_ADDRESS_SIZE];


char btRemPassKey[BT_PASSKEY_SIZE];

BT_Return_Code_t res = BT_EXEC_OK;

printf("\n\n\nInsert New Speaker Volume Value (0..15)\n: ");


scanf("%d", &volumeGain);


res = BT_Set_Speaker_Volume_Gain(btAddress, btRemPassKey,(unsigned short) volumeGain);

7.1.4.3.6 BT_Get_Speaker_Volume_Gain ()


This function gets speaker volume gain for the remote BT_Addr_t specified in the parameter. 


The headset must be connected to the AG.


Prototype


BT_Return_Code_t  BT_Get_Speaker_Volume_Gain (BT_Addr_t  remote_address,

                                                                                       BT_Passkey_t  pin_code, 


                                                                                      unsigned short *volume_gain)


Parameters


<remote_address>       It’s a BT_Addr_t  that contains the Bluetooth address of the 

                                 remote Bluetooth device. 


<pin_code>
       It’s a BT_Passkey_t that contains the pin code to use in 

                                pairing process.


<volume_gain>
    It’s a pointer to an unsigned short indicating speaker gain of the 

                                   remote  device


Return values

BT_EXEC_OK         

Command correctly executed


!= ( BT_EXEC_OK )                             An unpredictable error occurred


Example

unsigned short speakVolume;

char btAddress[BT_ADDRESS_SIZE];


char btRemPassKey[BT_PASSKEY_SIZE];

BT_Return_Code_t res = BT_EXEC_OK;

res = BT_Get_Speaker_Volume_Gain(btAddress, btRemPassKey,&speakVolume);


printf("Speaker Volume Gain: %d\n", speakVolume);

8 List of acronyms and Abbreviation

		Acronym

		Explanation



		HSP

		Hands Free Profile



		GSM

		Global System for Mobile communications



		IP

		Internet Protocol



		SAP 

		Sim Access Profile



		PDU

		Protocol Data Unit



		PIN

		Personal Identification Number



		PPP

		Point to Point Protocol



		PUK

		Personal Unblocking Key



		SIM

		Subscriber Identity Module



		SMS

		Short Message Service



		TCP

		Transmission Control Protocol





Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved





page 2 of 196





Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved





page 2 of 196










Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved

page 2 of 68



_1261206678



