

GE863-PRO3 GPS Package User Guide
1VV0300857 Rev.0 – 2009-10-13

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 2 of 40

Disclaimer

The information contained in this document is the proprietary information of Telit
Communications S.p.A. and its affiliates (“TELIT”).

The contents are confidential and any disclosure to persons other than the officers,
employees, agents or subcontractors of the owner or licensee of this document,
without the prior written consent of Telit, is strictly prohibited.

Telit makes every effort to ensure the quality of the information it makes available.
Notwithstanding the foregoing, Telit does not make any warranty as to the information
contained herein, and does not accept any liability for any injury, loss or damage of any
kind incurred by use of or reliance upon the information.

Telit disclaims any and all responsibility for the application of the devices characterized
in this document, and notes that the application of the device must comply with the
safety standards of the applicable country, and where applicable, with the relevant
wiring rules.

Telit reserves the right to make modifications, additions and deletions to this document
due to typographical errors, inaccurate information, or improvements to programs
and/or equipment at any time and without notice.

Such changes will, nevertheless be incorporated into new editions of this document.

Copyright: Transmittal, reproduction, dissemination and/or editing of this document as
well as utilization of its contents and communication thereof to others without express
authorization are prohibited. Offenders will be held liable for payment of damages. All
rights are reserved.

Copyright © Telit Communications S.p.A. 2009.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 3 of 40

Applicable Products

PRODUCT

 GE863-PRO3

Linux SW Version

04.0004 or higher

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 4 of 40

Contents

1. Introduction ... 6

1.1. Scope .. 6

1.2. Audience ... 6

1.3. Contact Information, Support ... 6

1.4. Open Source Licenses .. 7
1.4.1. GPSD License ... 7

1.5. Product Overview .. 7

1.6. Document Organization .. 9

1.7. Text Conventions .. 9

1.8. Related Documents .. 9

1.9. Document History ... 10

2. Overview .. 11

3. GPSD Package ... 12

3.1. Package Installation ... 13
3.1.1. GE863-PRO³ .. 14
3.1.2. Development Environment .. 14

3.2. gpsd daemon .. 14

3.3. libgps library APIs .. 17
3.3.1. Structures ... 17

3.3.1.1. gps_data_t .. 17
3.3.2. Functions... 21

3.3.2.1. gps_open() .. 21
3.3.2.2. gps_set_raw_hook() ... 22
3.3.2.3. gps_set_callback() ... 23
3.3.2.4. gps_query() ... 24
3.3.2.5. gps_poll() .. 26
3.3.2.6. gps_del_callback() ... 27
3.3.2.7. gps_close() .. 28

3.4. Client Applications.. 28
3.4.1. cgps ... 28
3.4.2. gpsd.php .. 29

4. Appendix A .. 31

4.1. gpsd clients request/answer protocol .. 31

5. Appendix B .. 38

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 5 of 40

5.1. GPS Acronyms, Abbreviations and Glossary ... 38

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 6 of 40

1. Introduction

1.1. Scope
This user guide serves the following purposes:

 Describe the GPSD Package for GPS receivers’ control under Linux.
 Describe how software developers can use GPSD APIs to create GPS client

applications for GE863-PRO³ for controlling GPS receivers.

This document refers to GPSD 2.37 version.

1.2. Audience
This User Guide is intended for customers who want to develop GPS client applications
for GE863-PRO3.

1.3. Contact Information, Support
For general contact, technical support, to report documentation errors and to order manuals,
contact Telit’s Technical Support Center (TTSC) at:

TS-EMEA@telit.com
TS-NORTHAMERICA@telit.com
TS-LATINAMERICA@telit.com

TS-APAC@telit.com

Alternatively, use:
http://www.telit.com/en/products/technical-support-center/contact.php
For detailed information about where you can buy the Telit modules or for recommendations on
accessories and components visit:
http://www.telit.com
To register for product news and announcements or for product questions contact Telit
Technical Support Center (TTSC).
Our aim is to make this guide as helpful as possible. Keep us informed of your comments and
suggestions for improvements.
Telit appreciates feedback from the users of our information.

mailto:TS-EMEA@telit.com�
mailto:TS-NORTHAMERICA@telit.com�
mailto:TS-LATINAMERICA@telit.com�
mailto:TS-APAC@telit.com�
http://www.telit.com/en/products/technical-support-center/contact.php�
http://www.telit.com/�

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 7 of 40

1.4. Open Source Licenses

1.4.1. GPSD License
 BSD LICENSE

The GPSD code is Copyright (c) 1997, 1998, 1999, 2000, 2001, 2002 by
Remco Treffkorn. Portions of it are also Copyright (c) 2005 by Eric S.
Raymond. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither name of the GPSD project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.5. Product Overview
The GE863-PRO3 module contains a fully featured GSM/GPRS communications section,
compatible with the other Telit GSM/GPRS modules, but also incorporates a standalone
ARM9 CPU and memories, dedicated to user applications.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 8 of 40

This eliminates the need for an external host CPU in many applications, bringing true
real-time and multi tasking capabilities to an embedded module.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 9 of 40

1.6. Document Organization
This manual contains the following chapters:

• “Chapter 1, Introduction” provides a scope for this manual, target audience,
technical contact information, and text conventions.

• “Chapter 2, Overview” provides a brief description of how GPS receivers relay GPS
data.

• “Chapter 3, GPSD Package” describes GPSD Package detailing each of its
components.

• “Chapter 4, Appendix A” provides a description of request/answer protocol used
by gpsd clients.

• “Chapter 5, Appendix B” provides GPS Acronyms, Abbreviations and Glossary.

How to Use
If you are new to this product, it is recommended to start by reading this document and
the following, in order to understand the concepts and specific features provided by the
built in software of the GE863-PRO3:
• TelitGE863PRO3 EVK User Guide 1VV0300776
• GE863PRO3 Linux Development Environment User Guide 1VV0300780
• GE863PRO3 Linux SW UserGuide 1vv0300781

1.7. Text Conventions
This section lists the paragraph and font styles used for the various types of
information presented in this user guide.

Format Content
Courier New Linux shell commands, filesystem paths and C source code examples

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

1.8. Related Documents
The following documents are related to this user guide:

[1] TelitGE863PRO3 Linux SW User Guide 1vv0300781
[2] TelitGE863PRO3 Hardware User Guide 1vv0300773a
[3] TelitGE863PRO3 EVK User Guide 1VV0300776
[4] TelitGE863PRO3 Linux Development Environment 1VV0300780

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 10 of 40

All documentation can be downloaded from Telit’s official web site www.telit.com if not
otherwise indicated.

1.9. Document History

RReevviissiioonn DDaattee CChhaannggeess
ISSUE #0 2009-10-13 First issue

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 11 of 40

2. Overview
In order to relay computed GPS variables such as position, velocity, course etc. to a
peripheral (e.g. computer, screen, transceiver), GPS modules use a serial interface.
The most important elements of receiver information are broadcasted via this interface
in a special data format. This format is standardized by the National Marine Electronics
Association (NMEA) to ensure that data exchange takes place without any problems.
Nowadays, data is relayed according to the NMEA-0183 specification.
NMEA data stream must be parsed and interpreted so that all the relayed information
can be retrieved and therefore used. The open source GPSD Package offers all the
functionalities to perform management and control of the GPS receiver and NMEA data
decoding under Linux OS.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 12 of 40

3. GPSD Package
GPSD is an Open Source Project (http://gpsd.berlios.de/#documentation) providing the
following features:

 Management and control of the GPS receiver attached to the controlling system

by means of a RS-232 serial port
 Retrieving, parsing and decoding of NMEA protocol and retrieving of the following

GNSS information:

o Fix Status (if the GPS receiver has acquired a 2D/3D fix or not)
o Latitude
o Longitude
o Altitude
o UTC Time
o Speed
o Heading
o Climb Speed
o Estimated position errors based on HDOP, VDOP and PDOP
o Visible Satellites and for each of them:

- Elevation
- Azimuth
- SNR

GE863-Pro3 GPSD Package is made up of the followings:

 gpsd daemon, for management and control of the GPS receiver;
 libgps library APIs, to ease development of GPS client applications for GE863-

PRO³ interfacing to the gpsd control daemon;
 cgps, test client application to show, using libgps APIs, the GPS information

received form a GPS module (e.g. Fix Status, Latitude, Longitude, Altitude, UTC
Time, Speed, Heading and Climb Speed).

 gpsd.php, php test client to show, interfacing to the gpsd control daemon, the
calculated point onto a web page with Google Maps using Google APIs

http://gpsd.berlios.de/#documentation�

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 13 of 40

The figure below shows the software framework for GPSD Package.

3.1. Package Installation
If you don’t have GPSD Package for GE863-PRO³ yet, you can download it from Telit’s
official web site Download Zone http://www.telit.com/en/products/download-zone.php.

gpsd_pro3.tar and libgps_pro3.tar files must be downloaded to install all GPSD
Package components.

UUsseerr SSppaaccee

KKeerrnneell SSppaaccee

GPS
Receiver

GGEE886633--PPRROO³³ LLiinnuuxx

gpsd daemon

tty device

RS232

libgps APIs

Client Applications (cgps, gpsd.php)

http://www.telit.com/en/products/download-zone.php�

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 14 of 40

3.1.1. GE863-PRO³
Once gpsd_pro3.tar file has been downloaded, it can be copied into the GE863-PRO³
root folder “/” as described in [4].

To install gpsd_pro3.tar, from the root folder “/” type:

tar –zxvf gpsd_pro3.tar

This will install the following GPSD Package components:

 gpsd daemon into /sbin
 cgps client application into /bin
 gpsd.php and gpsd_config.inc into /var/www

Now remove gpsd_pro3.tar file from target’s filesystem:

rm gpsd_pro3.tar

3.1.2. Development Environment
Once libgps_pro3.tar file has been downloaded, it can be copied into the coLinux root
folder “/” (refer to [4] for further information about Telit GE863-PRO³ Development
Environment).

To install libgps_pro3.tar, from the root folder “/” type:

tar –zxvf libgps_pro3.tar

This will install the following GPSD Package components:

 libgps.a into /opt/crosstools/telit/lib
 gps.h into /opt/crosstools/telit/include

Now remove libgps_pro3.tar file from coLinux’s filesystem:

rm libgps_pro3.tar

3.2. gpsd daemon
The gpsd daemon is a Linux service that monitors one GPS receiver attached to the
GE863-Pro3 through serial port, making all data on the location/course/velocity of the
sensor available to be queried on TCP port 2947 (default port) of the GE863-Pro3. With
this control daemon, multiple GPS client applications, such as navigational software,
can share access to the GPS receiver without contention or loss of data.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 15 of 40

Please note that loopback interface must be enabled to be able to use gpsd and client
applications, therefore type:

ifconfig lo up

Assuming a GPS receiver is connected to GE863-Pro3 through RS232 port
corresponding to /dev/ttyS1 device (see [3]) gpsd can be run simply typing:

gpsd –n –N –D2 /dev/ttyS1

All gpsd command line options are shown below.

Synopsis:

gpsd [-b] [-n] [-N] [-D <n>] [-F <sockfile>] [-P <pidfile>] [-S <port>] [-h] <device>

Parameters:

-b Broken-device-safety, otherwise known as read-only mode. Some
popular bluetooth and USB receivers lock up or become totally inaccessible when
probed or reconfigured. This switch prevents gpsd from writing to a receiver. This
means that gpsd cannot configure the receiver for optimal performance, but it also
means that gpsd cannot break the receiver. A better solution would be for
bluetooth to not be so fragile. A platform independent method to identify serial-
over-bluetooth devices would also be nice.

-n Don't wait for a client to connect before polling whatever GPS is
associated with it. It is thought that some GPSes go to a standby mode
(drawing less power) before the host machine asserts DTR, so waiting for the first
actual request might save battery power on portable equipment. This option
combines well with -D2 to enable monitoring of the GPS data stream.

-N Don't daemonize; run in foreground. Also suppresses privilege-
dropping. This switch is mainly useful for debugging. Its meaning may change in
future versions.

-F <sockfile> Create a control socket for device addition and removal commands.
You must specify a valid pathname on your local filesystem; this will be created as a
Unix- domain socket to which you can write commands that edit the daemon's
internal device list.

-P <pidfile> Specify the name and path to record the daemon's process ID.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 16 of 40

-D <n> Set debug level (default 0). gpsd reports, at debug levels 2 and above,
incoming sentence and actions to standard error if gpsd is in the foreground (-N) or to
syslog if in the background.

-S <port> Set TCP/IP port on which to listen for GPSD clients (default is 2947).

-h Display help message and terminate.

-V Dump version and exit.

<device> Normally, a data source is the name of a local serial device (e.g. /dev/ttyS1)
or a list of devices (e.g. /dev/ttyS1, /dev/ttyS2) from which the daemon may expect GPS
data.

A data source name may also be a URL pointing to a specific
differential-GPS service (DGPSIP server or Ntrip broadcaster). If the
URL starts with "ntrip://" Ntrip will be used; if the URL starts with
"dgpsip://", DGPSIP will be used. Gpsd also defaults to DGPSIP if no
protocol is defined. For Ntrip services that require authentication, a
prefix of the form "username:password@" can be added before the
name of the Ntrip broadcaster. If a suffix of the service name begins
with ":" it is interpreted as a port number, overriding the default
IANA-assigned port of 2101. For Ntrip service you also need to specify
which stream to use; the stream is given in the form "streamname".
So, an example DGPSIP URL could be "dgpsip://dgpsip.example.com"
and a Ntrip URL could be:

"ntrip://foo:bar@ntrip.example.com:80/example-stream"

Internally, the daemon maintains a device list holding the pathnames of GPSes
known to the daemon. Initially, this list is the list of device-name arguments
specified on the command line. That list may be empty, in which case the daemon
will have no devices on its search list until they are added by a control-socket
command. Daemon startup will abort with an error if neither any devices nor a
control socket are specified.

Once gpsd has successfully started, client applications can connect to it through the
chosen TCP port, using libgps APIs as described in paragraph 3.3 to show all
computed GNSS information.
gpsd clients use a request/answer protocol to communicate with gpsd and retrieve
GNSS information (longitude, latitude, altitude, etc..): refer to Appendix A for a
complete description of gpsd request/answer protocol.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 17 of 40

3.3. libgps library APIs
libgps is a service library which interfaces with gpsd to allow client applications to
retrieve GNSS data.
libgps uses a gps_data_t data structure to store all GNSS information and whose fields
are updated upon queries performed by the client application.
To develop an application using libgps, use the linker option –lgps and include gps.h
header file. libpthread and libm have to be linked also. Please see [4] for further
information on how to create a C source project for GE863-Pro3.

3.3.1. Structures

3.3.1.1. gps_data_t

gps_data_t is the GPS-data structure which holds all the data collected by the GPS and
whose fields are updated through the functions described later on.

struct gps_data_t {
 gps_mask_t set;
 /* has field been set since this was last cleared? */
#define ONLINE_SET 0x00000001u
#define TIME_SET 0x00000002u
#define TIMERR_SET 0x00000004u
#define LATLON_SET 0x00000008u
#define ALTITUDE_SET 0x00000010u
#define SPEED_SET 0x00000020u
#define TRACK_SET 0x00000040u
#define CLIMB_SET 0x00000080u
#define STATUS_SET 0x00000100u
#define MODE_SET 0x00000200u
#define HDOP_SET 0x00000400u
#define VDOP_SET 0x00000800u
#define PDOP_SET 0x00001000u
#define TDOP_SET 0x00002000u
#define GDOP_SET 0x00004000u
#define DOP_SET (HDOP_SET|VDOP_SET|PDOP_SET|TDOP_SET|GDOP_SET)
#define HERR_SET 0x00008000u
#define VERR_SET 0x00010000u
#define PERR_SET 0x00020000u
#define ERR_SET (HERR_SET | VERR_SET | PERR_SET)
#define SATELLITE_SET 0x00040000u
#define PSEUDORANGE_SET 0x00080000u
#define USED_SET 0x00100000u
#define SPEEDERR_SET 0x00200000u
#define TRACKERR_SET 0x00400000u
#define CLIMBERR_SET 0x00800000u
#define DEVICE_SET 0x01000000u
#define DEVICELIST_SET 0x02000000u
#define DEVICEID_SET 0x04000000u
#define ERROR_SET 0x08000000u

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 18 of 40

#define CYCLE_START_SET 0x10000000u
#define RTCM_SET 0x20000000u
#define FIX_SET
 (TIME_SET|MODE_SET|TIMERR_SET|LATLON_SET|HERR_SET|ALTITUDE_SET|VERR_
SET|TRACK_SET|TRACKERR_SET|SPEED_SET|SPEEDERR_SET|CLIMB_SET|CLIMBERR_SE
T)
 double online;
 /* NZ if GPS is on line, 0 if not.
 *
 * Note: gpsd clears this flag when sentences
 * fail to show up within the GPS's normal
 * send cycle time. If the host-to-GPS
 * link is lossy enough to drop entire
 * sentences, this flag will be
 * prone to false negatives.
 */

 struct gps_fix_t fix; /* accumulated PVT data */

 double separation; /* Geoidal separation, MSL -
WGS84 (Meters) */

 /* GPS status -- always valid */
 int status; /* Do we have a fix? */
#define STATUS_NO_FIX 0 /* no */
#define STATUS_FIX 1 /* yes, without DGPS */
#define STATUS_DGPS_FIX 2 /* yes, with DGPS */

 /* precision of fix -- valid if satellites_used > 0 */
 int satellites_used /* Number of satellites used in solution */
 int used[MAXCHANNELS];

 /* Store the status for each visible satellite, i.e. if it
 used for the solution or not (1,0 values respectively);
 therefore, since visible satellites PRNs are stored into
 PRN[MAXCHANNELS], by accessing to
 used[MAXCHANNELS] with the same index
 (i=0...MAXCHANNELS-1) we are able to know
 which satellite is used for GPS solution.*/
 double pdop, hdop, vdop, tdop, gdop; /* Dilution of precision
*/

 /* redundant with the estimate elments in the fix structure */
 double epe;/* spherical position error, 95% confidence (meters) */

 /* satellite status -- valid when satellites > 0 */
 int satellites; /* # of satellites in view */
 int PRN[MAXCHANNELS]; /* PRNs of satellite */
 int elevation[MAXCHANNELS]; /* elevation of satellite */
 int azimuth[MAXCHANNELS]; /* azimuth */
 int ss[MAXCHANNELS]; /* signal-to-noise ratio (dB) */

 /* compass status -- TrueNorth (and any similar) devices only */

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 19 of 40

 char headingStatus;
 char pitchStatus;
 char rollStatus;
 double horzField; /* Magnitude of horizontal magnetic field */

 /* where and what gpsd thinks the device is */
 char gps_device[PATH_MAX]; /* only valid if non-null. */
 char *gps_id; /* only valid if non-null. */
 unsigned int baudrate, parity, stopbits;/* RS232 link parameters */
 unsigned int driver_mode;
 /* whether driver is in native mode or not */

 /* RTCM-104 data */
 struct rtcm_t rtcm;

 /* device list */
 int ndevices; /* count of available devices */
 char **devicelist; /* list of pathnames */

 /* profiling data for last sentence */
 bool profiling; /* profiling enabled? */
 char tag[MAXTAGLEN+1]; /* tag of last sentence processed */
 size_t sentence_length; /* character count of last sentence */
 double sentence_time; /* sentence timestamp */
 double d_xmit_time; /* beginning of sentence transmission */
 double d_recv_time; /* daemon receipt time (-> E1+T1) */
 double d_decode_time; /* daemon end-of-decode time (-> D1) */
 double poll_time; /* daemon poll time (-> W) */
 double emit_time; /* emission time (-> E2) */
 double c_recv_time; /* client receipt time (-> T2) */
 double c_decode_time; /* client end-of-decode time (-> D2) */
 double cycle, mincycle; /* refresh cycle time in seconds */

 /* these members are private */
 int gps_fd; /* socket or file descriptor to GPS */
 void (*raw_hook)(struct gps_data_t *, char *, size_t len, int
level); /* Raw-mode hook for GPS data. */
 void (*thread_hook)(struct gps_data_t *, char *, size_t len, int
level); /* Thread-callback hook for GPS data. */
};

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 20 of 40

struct rtcm_t GPS-data structure is used to store all the RTCM-104 data, when the GPS
receiver use RTCM-104 source for differential corrections. Please note that not all GPS
receivers use RTCM-104 differential corrections.

struct rtcm_t {
 /* header contents */
 unsigned type; /* RTCM message type */
 unsigned length; /* length (words) */
 double zcount; /* time within hour: GPS time, no leap secs */
 unsigned refstaid; /* reference station ID */
 unsigned seqnum; /* nessage sequence number (modulo 8) */
 unsigned stathlth; /* station health */

 /* message data in decoded form */
 union {
 struct {
 unsigned int nentries;
 struct rangesat_t { /* data from messages 1 & 9 */
 unsigned ident; /* satellite ID */
 unsigned udre; /* user diff. range error */
 unsigned issuedata; /* issue of data */
 double rangerr; /* range error */
 double rangerate; /* range error rate */
 } sat[MAXCORRECTIONS];
 } ranges;
 struct { /* data for type 3 messages */
 bool valid; /* is message well-formed? */
 double x, y, z;
 } ecef;
 struct { /* data from type 4 messages */
 bool valid; /* is message well-formed? */
 enum {gps, glonass, unknown} system;
 enum {local, global, invalid} sense;
 char datum[6];
 double dx, dy, dz;
 } reference;
 struct { /* data from type 5 messages */
 unsigned int nentries;
 struct consat_t {
 unsigned ident; /* satellite ID */
 bool iodl; /* issue of data */
 unsigned int health; /* is satellite healthy? */
#define HEALTH_NORMAL (0) /* Radiobeacon operation normal */
#define HEALTH_UNMONITORED (1) /* No integrity monitor operating */
#define HEALTH_NOINFO (2) /* No information available */
#define HEALTH_DONOTUSE (3) /* Do not use this radiobeacon */
 int snr; /* signal-to-noise ratio, dB */
#define SNR_BAD -1 /* not reported */
 unsigned int health_en; /* health enabled */

http://en.wikipedia.org/wiki/RTCM�
http://en.wikipedia.org/wiki/RTCM�

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 21 of 40

 bool new_data; /* new data? */
 bool los_warning; /* line-of-sight warning */
 unsigned int tou; /* time to unhealth, seconds */
 } sat[MAXHEALTH];
 } conhealth;
 struct { /* data from type 7
messages */
 unsigned int nentries;
 struct station_t {
 double latitude, longitude; /* location */
 unsigned int range; /* range in km */
 double frequency; /* broadcast freq */
 unsigned int health; /* station health */
 unsigned int station_id; /* of the transmitter */
 unsigned int bitrate; /* of station transmissions */
 } station[MAXSTATIONS];
 } almanac;
 /* data from type 16 messages */
 char message[(RTCM_WORDS_MAX-2) * sizeof(isgps30bits_t)];
 /* data from messages of unknown type */
 isgps30bits_t words[RTCM_WORDS_MAX-2];
 } msg_data;
};

3.3.2. Functions

3.3.2.1. gps_open()

gps_open() initializes a GPS-data structure to hold the data collected by the GPS, and
returns a socket attached to gpsd.

Prototype
struct gps_data_t *gps_open(const char *host, const char *port)

Arguments
host – host address to connect to
port – host port to be used for TCP connection

Return value
A pointer to a struct gps_data_t on success
NULL on errors. errno is set depending on the error returned from the the socket
layer; see gps.h for values and explanations

Example
struct gps_data_t *gpsdata; /* Struct for gps data */
char *server = NULL; /* *server=NULL => 127.0.0.1 */
char *port = “2947”;
char *err_str = NULL;

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 22 of 40

gpsdata = gps_open(server, port);

if (!gpsdata)
{
 switch (errno) {
 case NL_NOSERVICE: err_str = "can't get service entry"; break;
 case NL_NOHOST: err_str = "can't get host entry"; break;
 case NL_NOPROTO: err_str = "can't get protocol entry"; break;
 case NL_NOSOCK: err_str = "can't create socket"; break;
 case NL_NOSOCKOPT: err_str = "error SETSOCKOPT SO_REUSEADDR";
break;
 case NL_NOCONNECT: err_str = "can't connect to host"; break;
 default: err_str = "Unknown"; break;
 }

 (void)fprintf(stderr, "gps_client: no gpsd running or network
error: %d, %s\n", errno, err_str);
 exit(2);
}

3.3.2.2. gps_set_raw_hook()

gps_set_raw_hook() takes a function you specify and run it (synchronously) on the raw
data pulled by a gps_query() or gps_poll() call. The arguments passed to this hook will
be a pointer to a structure containing parsed data, and a buffer containing the raw gpsd
response.

Prototype
void gps_set_raw_hook(struct gps_data_t *gpsdata, void (*hook)(struct gps_data_t
*sentence, char *buf))

Arguments
gpsdata – pointer to the GPS data structure used to store GPS information
hook - function to be run synchronously

Return value
None

Example
struct gps_data_t *gpsdata; /* Struct for gps data */
void update_gps_panel(struct gps_data_t *gpsdata, char *message);

int main()
{
 …..
 gps_open(server, port);
 …..
 gps_set_raw_hook(gpsdata, update_gps_panel);

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 23 of 40

 (void)gps_query(gpsdata, "q\n");
 …..
 gps_close(gpsdata);
 …..
}

3.3.2.3. gps_set_callback()

gps_set_callback() takes a function you specify and runs it asynchronously each time
new data arrives from gpsd, using POSIX threads. Actually gps_set_callback() creates a
thread through the pthread_create() function and stores thread’s ID. For example, you
can call gps_set_callback(gpsdata, my_function, handler) once in your program, and
from there on your gps data structure will be parsed by your my_function() each time
new data are available. my_function() could change some global variables in your
program based on received data; it is your responsibility to ensure that your program
uses mutexes or other mechanisms to avoid race conditions.

Prototype
int gps_set_callback(struct gps_data_t *gpsdata, void (*callback)(struct gps_data_t
*sentence, char *buf), pthread_t *handler)

Arguments
gpsdata – pointer to the GPS data structure used to store GPS information
callback – function to be run asynchronously
handler – thread handler

Return value
Same as the return value of pthread_create() function:
If successful, the pthread_create() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

Example
struct gps_data_t *gpsdata; /* Struct for gps data */
void update_gps_panel(struct gps_data_t *gpsdata, char *message);

int main()
{
 pthread_t threadID;
 …..
 gps_open(server, port);
 …..
 If (gps_set_callback(gpsdata, update_gps_panel, &threadID) != 0)
 {
 /* Error Management */
 }

 (void)gps_poll(gpsdata);
 …..

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 24 of 40

 gps_close(gpsdata);
 …..

}

3.3.2.4. gps_query()

gps_query() writes a command to the daemon, accepts a one-line response, and
updates parts of the GPS-data structure that correspond to data changed since the last
call. The one-line response from gpsd is written into the char *buf of the callback
registered with gps_set_raw_hook() or gps_set_callback(). The user can therefore
either parse the one-line response or access to the updated fields of the GPS-data
structure depending on its own needs (please have a look to the examples below).

Prototype
int gps_query(struct gps_data_t *gpsdata, const char *fmt, ...)

Arguments
gpsdata – pointer to the GPS data structure used to store GPS information
fmt – must be a format string containing letters which are exactly the ones from the
command set accepted by gpsd daemon described in Appendix A. It may have %
elements as for sprintf, which will be filled in from any following arguments.

Return value
0 if successful, -1 otherwise

Example 1
The following example registers the update_probe() callback through the
gps_set_raw_hook() API and sends the “i” command to identify GPS through the
gps_query() API. The update_probe() callback is called when gpsd answers: this
callback function parses the char *message buffer containing the gpsd one-line
response.

char gps_type[26];
struct gps_data_t *gpsdata; // Struct for gps data

void update_probe(struct gps_data_t *gpsdata, char *message);
// Callback function to be
 // registered with

gps_set_raw_hook()

int main()
{
 char cmd1 = ‘i’; // identify the GPS – see Appendix A
 ….

http://linux.die.net/man/3/sprintf�

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 25 of 40

 gps_open(server, port);
 …..
 /* Register the callback function */
 gps_set_raw_hook(gpsdata, (void*)update_probe);

 /* Send the “i” command to gpsd to identify GPS */
 if(gps_query(gpsdata, "%c\n", cmd1) != 0)
 {
 /* Error Management */
 }
 ….
 gps_close(gpsdata);
 …..
}

void update_probe(struct gps_data_t *gpsdata, char *message)
{
 assert(message != NULL);
 memset(gps_type, '\0', sizeof(gps_type));

 if(strncmp(message,"GPSD,I=",6) == 0)
 {
 message+=7;
 (void)strlcpy(gps_type, message, sizeof(gps_type));
 }
}

Example 2
The following example registers the update_probe() callback through the
gps_set_raw_hook() API and sends the “p” command to retrieve position (latitude,
longitude) through the gps_query() API. The update_probe() callback is called when
gpsd answers: this callback function perform a direct access to the updated fields of
the GPS-data structure.

char gps_type[26];
struct gps_data_t *gpsdata; // Struct for gps data

void update_probe(struct gps_data_t *gpsdata, char *message);
// Callback function to be
 // registered with

gps_set_raw_hook()
int main()
{
 char cmd1 = ‘p’; // retrieve position – see Appendix A
 ….
 gps_open(server, port);
 …..
 /* Register the callback function */
 gps_set_raw_hook(gpsdata, (void*)update_probe);

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 26 of 40

 /* Send the “p” command to gpsd retrieve position */
 if(gps_query(gpsdata, "%c\n", cmd1) != 0)
 {
 /* Error Management */
 }
 ….
 gps_close(gpsdata);
 …..
}

void update_probe(struct gps_data_t *gpsdata, char *message)
{
 char scr[128];

 /* Fill in the latitude. */
 if (isnan(gpsdata->fix.latitude) == 0)
 {
 (void)snprintf(scr, sizeof(scr), "%s %c",
 deg_to_str(deg_type,fabs(gpsdata->fix.latitude)),
 (gpsdata->fix.latitude < 0) ? 'S' : 'N');
 } else
 (void)snprintf(scr, sizeof(scr), "n/a");
 printf("Latitude:\t%s\n", scr);

 /* Fill in the longitude. */
 if (isnan(gpsdata->fix.longitude) == 0)
 {
 (void)snprintf(scr, sizeof(scr), "%s %c",
 deg_to_str(deg_type, fabs(gpsdata->fix.longitude)),
 (gpsdata->fix.longitude < 0) ? 'W' : 'E');
 } else
 (void)snprintf(scr, sizeof(scr), "n/a");
 printf("Longitude:\t%s\n", scr);
}

3.3.2.5. gps_poll()

gps_poll() accepts a response, or sequence of responses, from the daemon and
interprets it as though it were a query response.

Prototype
int gps_poll(struct gps_data_t *gpsdata)

Arguments
gpsdata – pointer to the GPS data structure used to store GPS information

Return value
0 if successful, -1 otherwise

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 27 of 40

Example
struct gps_data_t *gpsdata; /* Struct for gps data */

if (gps_poll(gpsdata) != 0)
{
 /* Error Management */
}

3.3.2.6. gps_del_callback()

gps_del_callback() deregisters the callback function previously set with
gps_set_callback(). After the invocation of this function no operation will be done
when new data arrives.

Prototype
int gps_del_callback(struct gps_data_t *gpsdata, pthread_t *handler)

Arguments
gpsdata – pointer to the GPS data structure used to store GPS information
handler – thread handler

Return Value
Same as the return value of pthread_cancel() function:
If successful, the pthread_cancel() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

Example
struct gps_data_t *gpsdata; /* Struct for gps data */
void update_gps_panel(struct gps_data_t *gpsdata, char *message);

int main()
{
 pthread_t threadID;
 …..
 gps_set_callback(gpsdata, update_gps_panel, &threadID);
 (void)gps_poll(gpsdata);

 …..
 …..

 If (gps_del_callback(gpsdata, &threadID) != 0)
 {
 /* Error Management */
 }
 ….
}

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 28 of 40

3.3.2.7. gps_close()

gps_close() ends the session.

Prototype
int gps_close(struct gps_data_t * gpsdata)
Arguments
gpsdata – pointer to the GPS data structure used to store GPS information

Return value
0 if successful, -1 otherwise

Example
struct gps_data_t *gpsdata; /* Struct for gps data */

if(gps_close(gpsdata) != 0)
{
 /* Error Management */
}

3.4. Client Applications

3.4.1. cgps
GE863-Pro3 GPSD package includes cgps, a simple GPS client application written using
libgps APIs that, interfacing with the GPS daemon on TCP port 2947 can show Fix
Status, Latitude, Longitude, Altitude, UTC Time, Speed, Heading and Climb Speed.
Telit’s implementation of cgps for the GE863-Pro3 is based on the cgps version that can
be found into gpsd project’s original package.

cgps can be run, once gpsd has be launched, typing:

cgps

The screenshot below shows cgps running on GE863-Pro3.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 29 of 40

3.4.2. gpsd.php
The GPS package also includes a php script that, interfacing with the GPS daemon on
TCP port 2947 and using Google APIs, can show the calculated point onto a web page
with Google Maps.
To run gpsd.php test client Cherokee webserver and PHP interpreter must be installed
on PRO3.
Also, make sure that your PRO3 EVK is connected to your host PC through the USB
Host/Device cable as described in [4].
Open a web browser on your PC and type http://192.168.121.3/gpsd.php
(192.168.121.3 is the default IP address used by USB Ethernet Gadget Connection [4]).

To use gpsd.php test client with a different IP address the gpsd_config.inc file into
/var/www must be edited: a valid google API key must be specified for the new chosen
IP address.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 30 of 40

The screenshot below shows the gpsd.php example.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 31 of 40

4. Appendix A

4.1. gpsd clients request/answer protocol
The request protocol for gpsd clients is very simple. Each request normally consists of
a single ASCII character followed by a newline. Case of the request character is ignored.
Each request returns a line of response text ended by a CR/LF.
Requests and responses, which can be performed through libgps APIs as shown
paragraph 3.3, are as follows, with %f standing for a decimal float numeral and %d for
decimal integer numeral:

a
The current altitude as "A=%f", meters above mean sea level.

b
The B command with no argument returns four fields giving the parameters of the
serial link to the GPS as "B=%d %d %c %d"; baud rate, byte size, parity, (N, O or E for
no parity, odd, or even) and stop bits (1 or 2). The command "B=%d" sets the baud rate,
not changing parity or stop bits; watch the response, because it is possible for this to
fail if the GPS does not support a speed-switching command. In case of failure, the
daemon and GPS will continue to communicate at the old speed. The B= form is
rejected if more than one client is attached to the channel.

c
C with no following = asks the daemon to return the cycle time of the attached GPS, if
any. If there is no attached device it will return "C=?”.
If the driver has the capability to change sampling rate the command "C=%f" does so,
setting a new cycle time in seconds. The "C=" form is rejected if more than one client is
attached to the channel.
If the driver has the capability to change sampling rate, this command always returns
"C=%f %f" giving the current cycle time in seconds and the minimum possible cycle
time at the current baud rate. If the driver does not have the capability to change
sampling rate, this returns, as "C=%f", the cycle time in seconds only.
Either number may be fractional, indicating a GPS cycle shorter than a second;
however, if >1 the cycle time must be a whole number. Also note that relatively few
GPSes have the ability to set sub-second cycle times; consult your hardware protocol
description to make sure this works.
This command will return "C=?" at start of session, before the first full packet has been
received from the GPS, because the GPS type is not yet known. To set up conditions for
a real answer, issue it after some command that reads position/velocity/time
information from the device.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 32 of 40

d
Returns the UTC time in the ISO 8601 format "D=yyyy\-mm\-ddThh:nmm:ss\&.ssZ".
Digits of precision in the fractional-seconds part will vary and may be absent.

e
Returns "E=%f %f %f": three estimated position errors in meters -- total, horizontal,
and vertical (95% confidence level). Note: many GPSes do not supply these numbers.
When the GPS does not supply them, gpsd computes them from satellite DOP using
fixed figures for expected non-DGPS and DGPS range errors in meters. A value of '?' for
any of these numbers should be taken to mean that component of DOP is not available.
See also the 'q' command.

f
Gets or sets the active GPS device name. The bare command 'f' requests a response
containing 'F=' followed by the name of the active GPS device. The other form of the
command is 'f=', in which case all following printable characters up to but not including
the next CR/LF are interpreted as the name of a trial GPS device. If the trial device is in
gpsd's device list, it is opened and read to see if a GPS can be found there. If it can, the
trial device becomes the active device for this client.
The 'f=' command may fail if the specified device name is not on the daemon's device
list. This device list is initialized with the paths given on the command line, if any were
specified. For security reasons, ordinary clients cannot change this device list; instead,
this must be done via the daemon's local control socket declared with the -F option.
Once an 'f=' command succeeds, the client is tied to the specified device until the client
disconnects.
Whether the command is 'f' or 'f=' or not, and whether it succeeds or not, the response
always lists the name of the client's device.
(At protocol level 1, the F command failed if more than one client was attached, and
multiple devices were not supported.)

g
With =, accepts a single argument which may have either of the values 'gps' or
'rtcm104', with case ignored. This specifies the type of information the client wants and
forces a device assignment. Without =, forces a device assignment but doesn't force the
type. This command is optional; if it is not given, the client will be bound to whatever
available device the daemon finds first.
This command returns either '?' if no device of the specified type(s) could be assigned,
otherwise a string ('GPS' or 'RTCM104') identifying the kind of information the attached
device returns.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 33 of 40

i
Returns a text string identifying the GPS. The string may contain spaces and is
terminated by CR-LF. This command will return '?' at start of session, before the first
full packet has been received from the GPS, because its type is not yet known.

j
Get or set buffering policy; this is only related to NMEA devices which report fix data in
several separate sentences during the poll cycle (and in particular it doesn't matter for
SiRF chips). The default (j=0) is to clear all fix data at the start of each poll cycle, so
until the sentence that reports a given piece of data arrives queries will report ?.
Setting j=1 will disable this, retaining data from the previous cycle. This is a per-user-
channel bit, not a per\device one. The j=0 setting is hyper-correct and never displays
stale data, but may produce a jittery display; the j=1 setting allows stale data but
smoothes the display.
(At protocol level below 3, there was no J command. Note, this command is
experimental and its semantics are subject to change.)

k
Returns a line consisting of "K=" followed by an integer count of of all GPS devices
known to gpsd, followed by a space, followed by a space\-separated list of the device
names\&. This command lists devices the daemon has been pointed at by the
command\-line argument(s) or an add command via its control socket, and has
successfully recognized as GPSes\&. Because GPSes might be unplugged at any time,
the presence of a name in this list does not guarantee that the device is available.
(At protocol level 1, there was no K command.)

l
Returns three fields: a protocol revision number, the gpsd version, and a list of
accepted request letters.

m
The NMEA mode as "M=%d". 0=no mode value yet seen, 1=no fix, 2=2D (no altitude),
3=3D (with altitude).

n
Get or set the GPS driver mode. Without argument, reports the mode as "N=%d"; N=0
means NMEA mode and N=1 means alternate mode (binary if it has one, for SiRF and
Evermore chipsets in particular). With argument, set the mode if possible; the new
mode will be reported in the response. The "N=" form is rejected if more than one
client is attached to the channel.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 34 of 40

o
Attempts to return a complete time/position/velocity report as a unit. Any field for
which data is not available being reported as ?. If there is no fix, the response is simply
"O=?", otherwise a tag and timestamp are always reported. Fields are as follows, in
order:

tag
A tag identifying the last sentence received. For NMEA devices this is just the
NMEA sentence name; the talker-ID portion may be useful for distinguishing
among results produced by different NMEA talkers in the same wire.

timestamp
Seconds since the Unix epoch, UTC. May have a fractional part of up to .01sec
precision.

time error
Estimated timestamp error (%f, seconds, 95% confidence).

latitude
Latitude as in the P report (%f, degrees).

longitude
Longitude as in the P report (%f, degrees).

altitude
Altitude as in the A report (%f, meters). If the mode field is not 3 this is an
estimate and should be treated as unreliable.

horizontal error estimate
Horizontal error estimate as in the E report (%f, meters).

vertical error estimate
Vertical error estimate as in the E report (%f, meters).

course over ground
Track as in the T report (%f, degrees).

speed over ground
Speed (%f, meters/sec). Note: older versions of the O command reported this
field in knots.

climb/sink
Vertical velocity as in the U report (%f, meters/sec).

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 35 of 40

estimated error in course over ground
Error estimate for course (%f, degrees, 95% confidence).

estimated error in speed over ground
Error estimate for speed (%f, meters/sec, 95% confidence). Note: older
experimental versions of the O command reported this field in knots.

estimated error in climb/sink
Estimated error for climb/sink (%f, meters/sec, 95% confidence).

mode
The NMEA mode (2=2D fix, 3=3D fix). (This field was not reported at protocol
levels 2 and lower.)

p
Returns the current position in the form "P=%f %f"; numbers are in degrees, latitude
first.

q
Returns "Q=%d %f %f %f %f %f": a count of satellites used in the last fix, and five
dimensionless dilution-of-precision (DOP) numbers -- spherical, horizontal, vertical,
time, and total geometric. These are computed from the satellite geometry; they are
factors by which to multiply the estimated UERE (user error in meters at specified
confidence level due to ionosphere’s delay, multipath reception, etc.) to get actual
circular error ranges in meters (or seconds) at the same confidence level. See also the
'e' command. Note: some GPSes may fail to report these, or report only one of them
(often HDOP); a value of 0.0 should be taken as an indication that the data is not
available.

r
Sets or toggles 'raw' mode. Return "R=0" or "R=1" or "R=2". In raw mode you read the
NMEA data stream from each GPS. (Non-NMEA GPSes get their communication format
translated to NMEA on the fly.) If the device is a source of RTCM-104 corrections, the
corrections are dumped in the textual format described in rtcm104(5).
The command 'r' immediately followed by the digit '1' or the plus sign '+' sets raw mode.
The command 'r' immediately followed by the digit '2' sets super-raw mode; for non-
NMEA (binary) GPSes or RTCM-104 sources this dumps the raw binary packet. The
command 'r' followed by the digit '0' or the minus sign '-' clears raw mode. The
command 'r' with neither suffix toggles raw mode.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 36 of 40

s
The NMEA status as "S=%d"\&. 0=no fix, 1=fix, 2=DGPS-corrected fix.

t
Track made good; course "T=%f" in degrees from true north.

u
Current rate of climb as "U=%f" in meters per second. Some GPSes (not SiRF-based)
do not report this, in that case gpsd computes it using the altitude from the last fix (if
available).

v
The current speed over ground as "V=%f" in knots.

w
Sets or toggles 'watcher' mode (see the description below). Return "W=0" or "W=1".The
command 'w' immediately followed by the digit '1' or the plus sign '+' sets watcher
mode. The command 'w' followed by the digit '0' or the minus sign '-' clears watcher
mode. The command 'w' with neither suffix toggles watcher mode.

x
Returns "X=0" if the GPS is offline, "X=%f" if online; in the latter case, %f is a timestamp
from when the last sentence was received.
(At protocol level 1, the nonzero response was always 1.)

y
Returns Y=, followed by a sentence tag, followed by a timestamp (seconds since the
Unix epoch, UTC) and a count not more than 12, followed by that many quintuples of
satellite PRNs, elevation/azimuth pairs (elevation an integer formatted as %d in range
0-90, azimuth an integer formatted as %d in range 0-359), signal strengths in decibels,
and 1 or 0 according as the satellite was or was not used in the last fix. Each number is
followed by one space.
(At protocol level 1, this response had no tag or timestamp.)

z
The Z command returns daemon profiling information of interest to gpsd developers.
The format of this string is subject to change without notice.

$
The $ command returns daemon profiling information of interest to gpsd developers.
The format of this string is subject to change without notice.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 37 of 40

Note that a response consisting of just ? following the = means that there is no valid
data available. This may mean either that the device being queried is offline, or (for
position/velocity/time queries) that it is online but has no fix.
Requests can be concatenated and sent as a string; gpsd will then respond with a
comma-separated list of replies.
Every gpsd reply will start with the string "GPSD" followed by the replies. Examples:

query: "p\n" reply: "GPSD,P=36.000000 123.000000\r\n"
query: "d\n" reply: "GPSD,D=2002-11-16T02:45:05.12Z\r\n"
query: "va\n" reply: "GPSD,V=0.000000,A=37.900000\r\n"

When clients are active but the GPS is not responding, gpsd will spin trying to open the
GPS device once per second. Thus, it can be left running in background and survive
having a GPS repeatedly unplugged and plugged back in. When it is properly installed
along with hotplug notifier scripts feeding it device-add commands, gpsd should
require no configuration or user action to find devices.
The recommended mode for clients is watcher mode. In watcher mode gpsd ships a
line of data to the client each time the GPS gets either a fix update or a satellite picture,
but rather than being raw NMEA the line is a gpsd 'o' or 'y' response. Additionally,
watching clients get notifications in the form X=0 or X=%f when the online/offline status
of the GPS changes, and an I response giving the device type when the user is assigned
a device.
Clients should be prepared for the possibility that additional fields (such as heading or
roll/pitch/yaw) may be added to the O command, and not treat the occurrence of extra
fields as an error. The protocol number will be incremented if and when such fields are
added.
Sending SIGHUP to a running gpsd forces it to close all GPSes and all client
connections. It will then attempt to reconnect to any GPSes on its device list and
resume listening for client connections. This may be useful if your GPS enters a
wedged or confused state but can be soft-reset by pulling down DTR.

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 38 of 40

5. Appendix B

5.1. GPS Acronyms, Abbreviations and Glossary
2D (Two Dimensional)
The horizontal position with latitude/longitude (or northing/easting or X/Y) is called 2D

3D (Three Dimensional)
The horizontal and vertical position with latitude/longitude/altitude
(northing/easting/altitude or X/Y/Z) is called 3D coordinate.

AGPS, Assisted GPS
Is a system that enhances the startup performance of a GPS satellite-based positioning
system.

Azimuth
A horizontal direction expressed as an angle between a referenced direction, and the
direction of the object. The referenced direction is normally true North.

Cold Start
Powering up a unit after it has been turned off for an extended period of time and no
longer contains current ephemeris data. In Cold Start Scenario, the receiver has no
knowledge on last position, approximate time or satellite constellation. The receiver
starts to search for signals blindly. This is normal behavior, if no backup battery is
connected. Cold Start time is the longest startup time for GPS receivers and can be
several minutes.

Dilution of Precision (DOP)
A description of the purely geometrical contribution to the uncertainty in a position fix.
Standard terms for the GPS application are:
GDOP: Geometric (3 position coordinates plus clock offset in the solution)
PDOP: Position (3 coordinates)
HDOP: Horizontal (2 horizontal coordinates)
VDOP: Vertical (height only)
TDOP: Time (clock offset only)
RDOP: Relative (normalized to 60 seconds and based on a change in geometry)
DOP is a function expressing the mathematical quality of solutions based on the
geometry of the satellites. Position dilution of precision (PDOP), the most common such
value, has a best case value of 1, higher numbers being worse. A low number of DOP (2)
is good, a high number (>7) is considered to be bad. The best PDOP would occur with
one satellite directly overhead and three others evenly spaced about the horizon..
PDOP could theoretically be infinite, if all the satellites were in the same plane. PDOP

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 39 of 40

has a multiplicative effect on the user range error (URE) value. A URE of 32 meters with
a PDOP of one would give a user an assumed best accuracy of 32 meters. A PDOP of 2
would result in an assumed accuracy of 64 meters. Many receivers can be programmed
to stop providing position solutions above a specific PDOP level (6 is common).

Elevation
Height above or below mean sea level or vertical distance above the geoid.

GNSS - Global Navigation Satellite System
Is the standard generic term for Satellite Navigation Systems that provide
autonomous geo-spatial positioning with global coverage. As of 2007, the United States
NAVSTAR Global Positioning System (GPS) is the only fully operational GNSS.

Hot Start
Start mode of the GPS receiver when current position, clock offset, approximate GPS
time and current ephemeris data are all available. In Hot Start Scenario, the receiver
was off for less than 2 hours. It uses its last Ephemeris data to calculate a position fix.

HDOP
Horizontal Dilution of Precision. (see Dilution of Precision).

NMEA - National Marine Electronics Association
A U.S. standards committee that defines data message structure, contents, and
protocols to allow the GPS receiver to communicate with other pieces of electronic
equipment. NMEA 0183 is the standard data communication protocol used by GPS
receivers and other types of navigation and marine electronics.

PDOP
Dilution of Precision for a position (3D). (see Dilution of Precision).

RTCM-104
Serial protocol used for broadcasting pseudo range corrections from differential-GPS
reference stations.

Time-To-First-Fix (TTFF)
The actual time required by a GPS receiver to achieve a position solution. This
specification will vary with the operating state of the receiver, the length of time since
the last position fix, the location of the last fix, and the specific receiver design. See
also Hot Start, Warm Start and Cold Start mode descriptions.

VDOP
Vertical Dilution of Precision. (see Dilution of Precision).

GE863-Pro3 GPS Package User Guide

1VV0300857 Rev.0 – 2009-10-13

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 40 of 40

Warm Start
Start mode of a GPS receiver when current position, clock offset and approximate GPS
time are known. Almanac data is retained, but the ephemeris data is cleared. In Warm
Start Scenario, the receiver knows - due to a backup battery or by other techniques –
his last position, approximate time and almanac. Thanks to this, it can quickly acquire
satellites and get a position fix faster than in cold start mode.

	Introduction
	1.1. Scope
	1.2. Audience
	1.3. Contact Information, Support
	1.4. Open Source Licenses
	1.4.1. GPSD License

	1.5. Product Overview
	1.6. Document Organization
	1.7. Text Conventions
	1.8. Related Documents
	1.9. Document History

	2. Overview
	3. GPSD Package
	3.1. Package Installation
	3.1.1. GE863-PRO³
	3.1.2. Development Environment

	3.2. gpsd daemon
	3.3. libgps library APIs
	3.3.1. Structures
	3.3.1.1. gps_data_t

	3.3.2. Functions
	3.3.2.1. gps_open()
	3.3.2.2. gps_set_raw_hook()
	3.3.2.3. gps_set_callback()
	3.3.2.4. gps_query()
	3.3.2.5. gps_poll()
	3.3.2.6. gps_del_callback()
	3.3.2.7. gps_close()

	3.4. Client Applications
	3.4.1. cgps
	3.4.2. gpsd.php

	4. Appendix A
	4.1. gpsd clients request/answer protocol

	5. Appendix B
	5.1. GPS Acronyms, Abbreviations and Glossary

