

LE910Cx - mPCle HW Design Guide

1VV0301510 Rev. 8 - 2019-08-13

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

NOTICE

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

COPYRIGHTS

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

COMPUTER SOFTWARE COPYRIGHTS

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.

USAGE AND DISCLOSURE RESTRICTIONS

I. License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

II. Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit

III. High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High-Risk Activities.

IV. Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

V. Third Party Rights

The software may include Third Party Right software. In this case you agree to comply with all terms and conditions imposed on you in respect of such separate software. In addition to Third Party Terms, the disclaimer of warranty and limitation of liability provisions in this License shall apply to the Third Party Right software.

TELIT HEREBY DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED FROM ANY THIRD PARTIES REGARDING ANY SEPARATE FILES, ANY THIRD-PARTY MATERIALS INCLUDED IN THE SOFTWARE, ANY THIRD-PARTY MATERIALS FROM WHICH THE SOFTWARE IS DERIVED (COLLECTIVELY "OTHER CODE"), AND THE USE OF ANY OR ALL THE OTHER CODE IN CONNECTION WITH THE SOFTWARE, INCLUDING (WITHOUT LIMITATION) ANY WARRANTIES OF SATISFACTORY QUALITY OR FITNESS FOR A PARTICULAR PURPOSE.

NO THIRD PARTY LICENSORS OF OTHER CODE SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND WHETHER MADE UNDER CONTRACT, TORT OR OTHER LEGAL THEORY, ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE OTHER CODE OR THE EXERCISE OF ANY RIGHTS GRANTED UNDER EITHER OR BOTH THIS LICENSE AND THE LEGAL TERMS APPLICABLE TO ANY SEPARATE FILES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

APPLICABILITY TABLE

PRODUCTS

- **LE910C1-NS**
- **LE910C1-NA**
- LE910C1-NF
- LE910C4-NF
- LE910C1-AP
- LE910C4-AP
- LE910C1-EU
- LE910C4-EU
- LE910C1-SA
- LE910C1-ST
- **LE910C1-SV**
- **LE910C1-LA**
- **LE910C4-LA**
- LE910C4-CN

Contents

NOTICE 2

COPYRIG	HTS	2
СОМРИТІ	ER SOFTWARE COPYRIGHTS	2
USAGE A	ND DISCLOSURE RESTRICTIONS	3
APPLICA	BILITY TABLE	4
CONTENT	rs	5
1.	INTRODUCTION	. 10
1.1.	Scope	. 10
1.2.	Audience	. 10
1.3.	Contact Information, Support	. 10
1.4.	Text Conventions	. 11
1.5.	Related Documents	. 12
2.	GENERAL PRODUCT DESCRIPTION	. 13
2.1.	Overview	. 13
2.2.	Product Variants and Frequency Bands	. 14
2.3.	Target market	. 15
2.4.	Main features	. 16
2.5.	TX Output Power	. 17
2.6.	RX Sensitivity	. 17
2.7.	Mechanical specifications	. 18
2.7.1.	Dimensions	. 18
2.7.2.	Weight	. 18
2.8.	Temperature range	. 19
3.	PINS ALLOCATION	
3.1.	Pin-out	. 20
4.	POWER SUPPLY	. 25
4.1.	Power Supply Requirements	. 25
4.2.	Power Consumption	. 25
4.3.	General Design Rules	. 26
4.3.1.	Electrical Design Guidelines	. 26
4.3.1.1.	+5V Source Power Supply Design Guidelines	. 26
4.3.1.2.	+12V Source Power Supply Design Guidelines	. 27
4.3.2.	Thermal Design Guidelines	. 28

4.3.3.	Power Supply PCB layout Guidelines	29
4.4.	VAUX/PWRMON Power Output	31
4.5.	GNSS LNA BIAS	32
5.	ELECTRICAL SPECIFICATION	33
5.1.	Absolute Maximum Ratings – Not Operational	33
5.2.	Recommended Operating Conditions	33
6.	DIGITAL SECTION	34
6.1.	Logic Levels	34
6.2.	Power On	37
6.3.	Unconditional Restart	40
6.4.	Power OFF procedure	43
6.5.	Control signals	45
6.5.1.	WAKE_N	45
6.5.2.	W_DISABLE_N	47
6.5.3.	LED_WWAN_N	47
6.5.4.	PERST_N	48
6.6.	Hardware Interfaces	49
6.6.1.	USB Port	49
6.6.2.	Serial Port	51
6.6.2.1.	Modem Serial Port 1 Signals	51
6.6.2.2.	RS232 Level Translation	52
6.6.3.	I2C - Inter-integrated Circuit	54
6.6.4.	Digital Audio	54
6.7.	SIM Interface	56
7.	RF SECTION	57
7.1.	Bands Variants	57
7.2.	TX and RX characteristics	57
7.3.	Antenna requirements	57
7.3.1.	Antenna Connectors	57
7.3.2.	Main GSM/WCDMA/LTE Antenna Requirements	58
7.3.3.	Antenna Diversity Requirements	59
7.3.4.	GNSS Antenna Requirements	59
7.3.4.1.	Combined GNSS Antenna	60
7.3.4.2.	Linear and Patch GNSS Antenna	60
8.	MECHANICAL DESIGN	61
8.1.	Mechanical Dimensions	61

8.1.1.	Mechanical Drawing	61
8.1.2.	Top View	61
8.1.3.	Bottom View	62
8.1.4.	Side View	63
9.	APPLICATION PCB DESIGN	64
9.1.	Recommended footprint for the application	64
10.	EMC RECOMMENDATIONS	65
11.	PACKING SYSTEM	66
11.1.	Tray	66
11.2.	Tray Drawing	68
11.3.	Moisture sensitivity	69
12.	CONFORMITY ASSESSMENT ISSUES	70
12.1.	Declaration of Conformity	70
13.	SAFETY RECOMMENDATIONS	71
13.1.	READ CAREFULLY	71
14.	REFERENCE TABLE OF RF BANDS CHARACTERISTICS	72
15.	ACRONYMS	75
16.	DOCUMENT HISTORY	77

List of Tables

TABLE 1 PRODUCT VARIANTS AND FREQUENCY BANDS	14
TABLE 2 MAIN FEATURES	17
TABLE 3 TX OUTPUT POWER	
TABLE 4 RX SENSITIVITY	
TABLE 5 TEMPERATURE RANGE	19
TABLE 6 PIN-OUT	
TABLE 7 POWER SUPPLY REQUIREMENTS	25
TABLE 8 VAUX/PWRMON POWER OUTPUT	31
TABLE 9 GNSS LNA BIAS	
TABLE 10 ABSOLUTE MAXIMUM RATINGS – NOT OPERATIONAL	
TABLE 11 RECOMMENDED OPERATING CONDITIONS	
TABLE 12 ABSOLUTE MAXIMUM RATING CMOS 1.8V	
TABLE 13 ABSOLUTE MAXIMUM RATING CMOS 3.3V	
TABLE 14 OPERATING RANGE CMOS 1.8V	
TABLE 15 OPERATING RANGE CMOS 3.3V	
TABLE 16 OPERATING RANGE SIM CARD PADS	
TABLE 17 PERST_N	
TABLE 18 CONTROL SIGNALS	
TABLE 19 PERST_N OPERATING LEVELS	
TABLE 20 HARDWARE INTERFACES	_
TABLE 21 USB INTERFACE	
TABLE 22 MODEM SERIAL PORT 1 SIGNALS	
TABLE 23 DIGITAL AUDIO INTERFACE	
TABLE 24 SIM INTERFACE SIGNALS	
TABLE 25 MAIN ANTENNA REQUIREMENTS	
TABLE 26 DIVERSITY ANTENNA REQUIREMENTS	
TABLE 27 EMC RECOMMENDATIONS	
TABLE 28 TRAY PACKING	
TABLE 29 PACKING QUANTITIES	
TABLE 30 REFERENCE TABLE OF RF BANDS	
TABLE 31 ACRONYMS	
TABLE 32 DOCUMENT HISTORY	77

List of Figures

FIGURE 1 LINEAR REGULATOR WITH 5V INPUT	26
FIGURE 2 SWITCHING REGULATOR 12V	27
FIGURE 3 POWER SUPPLY RECOMMENDED CIRCUIT	30
FIGURE 4 POWER ON TIMING DIAGRAM	37
FIGURE 5 RECOMMENDED RESET DRIVER CIRCUIT	41
FIGURE 6 SHUTDOWN BY SOFTWARE COMMAND	43
FIGURE 7 WAKE_N INTERNAL DRIVER	46
FIGURE 8 LED_WWAN_N INTERNAL DRIVER	47
FIGURE 9 LEVEL ADAPTER EXAMPLE	53
FIGURE 10 RS232 DB-9 PINOUT	53
FIGURE 11 SIM INTERFACE	56
FIGURE 12 UFL ANTENNA CONNECTORS	
FIGURE 13 LE910CX-MPCIE TOP VIEW (DIMENSIONS ARE IN MM)	61
FIGURE 14 LE910CX-MPCIE BOTTOM VIEW	62
FIGURE 15 LE910CX-MPCIE SIDE VIEW	
FIGURE 16 LE910CX-MPCIE FOOTPRINT REFERENCE	64
FIGURE 17 LE910CX-MPCIE TRAY ORGANIZATION	67
FIGURE 18 LE910CX-MPCIE TRAY DRAWING	68

1. INTRODUCTION

1.1. Scope

The aim of this document is the description of some hardware solutions useful for developing a product with the Telit xE910Cx Mini PCIe Adapter.

1.2. Audience

This document is intended for Telit customers, especially system integrators, about to implement their applications using the Telit xE910Cx Mini PCle Adapter.

1.3. Contact Information, Support

For general contact, technical support services, technical questions and report documentation errors contact Telit Technical Support at:

- TS-EMEA@telit.com
- TS-AMERICAS@telit.com
- TS-APAC@telit.com
- TS-SRD@telit.com

Alternatively, use:

http://www.telit.com/support

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:

http://www.telit.com

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.

Telit appreciates feedback from the users of our information.

1.4. Text Conventions

Danger – This information MUST be followed or catastrophic equipment failure or bodily injury may occur.

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

1.5. Related Documents

[1] LE910Cx Hardware User Guide1VV0301298[2] LE920x4/LE910Cx AT Command User Guide80490ST10778A[3] Telit EVB User Guide1VV0301249[4] mPCle_IFBD_HW_USER_GUIDE1VV0301483[5] LE910/LE920 Digital Voice Interface Application Note80000NT11246A[6] Event Monitor Application Note80000NT10028a[7] PCI Express Mini Card Electromechanical SpecificationRevision 2.1

2. GENERAL PRODUCT DESCRIPTION

2.1. Overview

The aim of this document is to present possible and recommended hardware solutions useful for developing a product with the Telit LE910Cx-mPCle module. LE910Cx-mPCle is Telit platform for Mini PCle applications, such as M2M applications, table PC, based on the following technologies:

- LTE / WCDMA networks for data communication
- Designed for industrial grade quality

In its most basic use case, LE910Cx-mPCle can be applied as a wireless communication front-end for mobile products, offering mobile communication features to an external host CPU through its rich interfaces. LE910Cx-mPCle can further support customer software applications and security features. LE910Cx-mPCle

provides a software application development environment with sufficient system resources for creating rich on-board applications. Thanks to a dedicated application processor and embedded security resources, product developers and manufacturers can create products that guarantee fraud prevention and tamper evidence without extra effort for additional security precautions. LE910Cx-mPCle is available in hardware and band variants as listed in 2.2 Product Variants and Frequency Bands.

2.2. Product Variants and Frequency Bands

LE910Cx modules bands combinations are listed below:

Product	2G Band	3G Band	4G Band	Region
LE910C1-NA	2, 3, 5, 8	1, 2, 4, 5, 8	2, 4, 12	North America
LE910C1-AP	-	1, 5, 6, 8, 19	1, 3, 5, 8, 9, 18, 19, 26, 28	Asia-Pacific
LE910C4-AP	-	1, 5, 6, 8, 19	1, 3, 5, 8, 9, 18, 19, 26, 28	Asia-Pacific
LE910C1-NS	-	-	2, 4, 5, 12, 25, 26	North America - Sprint
LE910C4-NF	-	2, 4, 5	2, 4, 5, 12, 13, 14, 66, 71	North America
LE910C1-NF	-	2, 4, 5	2, 4, 5, 12, 13, 14, 66, 71	North America
LE910C1-EU	3, 8	1, 3, 8	1, 3, 7, 8, 20, 28A	Europe
LE910C4-EU	3, 8	1, 3, 8	1, 3, 7, 8, 20, 28A	Europe
LE910C1-SA	-	-	2, 4, 12, 14, 66	North America – AT&T
LE910C1-ST	-	-	2, 4, 12, 66, 71	North America – T-Mobile
LE910C1-SV	-	-	4, 13	North America - Verizon
LE910C1-LA	2, 3, 5, 8	1, 2, 4, 5	1, 2, 3, 4, 5, 7, 28	Latin America
LE910C4-LA	2, 3, 5, 8	1, 2, 4, 5	1, 2, 3, 4, 5, 7, 28	Latin America
LE910C4-CN	3, 8	W: 1, 8 TDS: 34, 39	1, 3, 5, 8, 38, 39, 40, 41M	China

Table 1 Product Variants and Frequency Bands

Refer to Chapter Reference Table of RF Bands Characteristics 14 for details information about frequencies and bands.

2.3. Target market

LE910Cx-mPCle can be used for wide variety applications, where low power consumption and low cost are required while sufficient data rates are achieved:

- Mini PCle applications
- Notebook PC
- M2M applications

2.4. Main features

Function	Features			
Modem	 Multi-RAT cellular modem for voice and data communication LTE FDD Catx data rates per the module variant used. Carrier aggregation is not supported GSM/GPRS/EDGE WCDMA up to DC HSPA+, Rel.9 Regional variants with optimal choice of RF bands coverage of countries and MNOs State-of-the-art GNSS solution with GPS/GLONASS/BeiDou/Galileo/QZSS receiver 			
Digital audio subsystem	 PCM/I2S digital audio interface Up to 48 kHz sample rate, 16 bit words 			
USIM ports – dual voltage Application processor	 Class B and Class C support Hot swap support Clock rates up to 4 MHz Application processor to run customer application code 32 bit ARM Cortex-A7 up to 1.3 GHz running the Linux operating system 			
	Flash + DDR are large enough to allow for customer's own software applications			
Interfaces	USB2.0 – USB port is typically used for: Flashing of firmware and module configuration Production testing Accessing the Application Processor's file system AT command access High-speed WWAN access to external host Diagnostic monitoring and debugging Communication between Java application environment and an external host CPU NMEA data to an external host CPU Peripheral Ports – I2C, UART GPIOS Antenna ports			
Form factor	Full-Mini Card 52 pin, 50.95mm x 30mm x 1mm.			

Environment and quality requirements	The entire module is designed and qualified by Telit for satisfying the environment and quality requirements.		
Single supply module	The module generates all its internal supply voltages.		
RTC	No dedicated RTC supply, RTC is supplied by VBATT		

Table 2 Main features

2.5. TX Output Power

Technology	Power (dBm)
2G LB	32
2G HB	29
3G/TD-SCDMA	23
4G FDD	22 @1RB

Table 3 TX Output Power

2.6. RX Sensitivity

Technology	Sensitivity (dBm)
2G	-107
3G/TD-SCDMA	-112
4G FDD (BW=5 MHz)	-102

Table 4 RX Sensitivity

2.7. Mechanical specifications

2.7.1. Dimensions

The overall dimensions of LE910Cx-mPCle family are:

• Length: 50.95 mm, +0/-0.3mm

• Width: 30 mm, +0/-0.3mm

• Thickness: 3.2 mm, +/-0.15mm (Version with SIM holder: 4.62 mm, +/-0.15mm)

2.7.2. Weight

The nominal weight of the module is 7 grams.

2.8. Temperature range

Case	Range	Note		
	–20°C ∼ +55°C	The module is fully functional(*) in all the temperature range, and it fully meets the 3GPP specifications.		
Operating		The module is fully functional (*) in all the temperature range.		
Operating Temperature Range	–40°C ∼ +85°C	However, there may be some performance deviations in this extended range relative to 3GPP requirements, which means that some RF parameters may deviate from the 3GPP specification in the order of a few dB. For example: receiver sensitivity or maximum output power may be slightly degraded		
Storage and non- operating Temperature Range	–40°C ~ +105°C			

Table 5 Temperature range

(*) Functional: the module is able to make and receive calls, data connection and SMS.

3. PINS ALLOCATION

3.1. Pin-out

LE910Cx mPCIe Pin out follows the mPCIe specification $\boxed{7}$

Pin	Signal	I/O	Function	Туре	Comment
Power Sup	ply				
24	3V3	1	3.3V Main Power Supply	Power	Supply for 3.3V I/O UART/DVI interface
2	3V3_AUX	1	3.3V Main Power Supply	Power	
39	3V3_AUX	-	3.3V Main Power Supply	Power	
41	3V3_AUX	-	3.3V Main Power Supply	Power	
52	3V3_AUX	-	3.3V Main Power Supply	Power	
4	GND	1	Ground		
9	GND	1	Ground		
15	GND	-	Ground		
18	GND	-	Ground		
21	GND	-	Ground		
26	GND	-	Ground		
27	GND	-	Ground		
29	GND	-	Ground		
34	GND	-	Ground		
35	GND	-	Ground		
37	GND	-	Ground		

40	GND	-	Ground	
43	GND	-	Ground	
50	GND	-	Ground	

Pin	Signal	I/O	Function	Туре	Comment		
SIM Card Interface							
8	SIMVCC	I/O	External SIM signal – Power supply for the SIM	1.8 / 3V			
10	SIMIO	I/O	External SIM signal - Data I/O	1.8 / 3V			
12	SIMCLK	0	External SIM signal – Clock	1.8 / 3V			
14	SIMRST	0	External SIM signal – Reset	1.8 / 3V			

Pin	Signal	I/O	Function	Туре	Comment	
USB Inte	USB Interface					
36	USB D-	I/O	USB differential Data (-)			
38	USB D+	I/O	USB differential Data (+)			

Pin	Signal	I/O	Function	Type	Comment	
UART						
3	UART_RX	_	Serial data input (RX) from DTE	1.8V		
5	UART_TX	0	Serial data output (TX) to DTE	1.8V		
17	UART_RTS	0	Output Request To Send signal (RTS) to DTE	1.8V		
19	UART_CTS	I	Input for Clear To Send signal (CTS) from DTE	1.8V		

Pin	Signal	I/O	Function	Туре	Comment			
Digital V	Digital Voice Interface (DVI)							
45	PCM_CLK	I/O	Digital Audio Interface (BIT Clock)	1.8V				
47	PCM_TX	0	Digital Audio Interface (TX Out of the card)	1.8V				
49	PCM_RX	I	Digital Audio Interface (RX Into the card)	1.8V				
51	PCM_SYNC	I/O	Digital Audio Interface (Frame_Sync)	1.8V				
16	REF_CLK	0	Reference clock for external Codec	1.8V				

WARNING:

There are two different types of mPCle modules; LE910Cx mPCle V1 and LE910Cx mPCle V2. Two types of mPCle modules have the different pinout on PCM signals but rest of pins are exactly same.

mPCle pinout	mPCle V1	mPCIe V2
47	PCM_RX	PCM_TX
49	PCM_TX	PCM_RX

LE910Cx mPCle V2 was developed to provide the improved thermal performance with the large solder resist opening area on the bottom side of the module. For more detail, please refer to 80576DSW10190A LE910Cx mPCle HW Release notes.

Pin	Signal	I/O	Function	Туре	Comment	
Miscellaneous Functions						
30	I2C_SCL	I/O	I2C clock	1.8V	Internally Pull Up 2.2kΩ to 1.8V	
32	I2C_SDA	I/O	I2C Data	1.8V	Internally PU 2.2kΩ to 1.8V	

Pin	Signal	I/O	Function	Туре	Comment		
Miscella	Miscellaneous Functions						
1	WAKE_N	0	Active low output signal used to wake up the system from stand-by	3.3V			
20	W_DISABLE_N	1	Active low signal for wireless disabling (Flight mode)	3.3V			
22	PERST_N	I	Active low functional reset input to the card	3.3V			
28	VAUX_PWRMON	0	Supply output for external accessories / Power ON monitor	1.8V			
42	LED_WWAN_N	0	Active low, open drain signal for WWAN LED driving, used to provide module's status indication	3.3V			
48	GPS_LNA_EN	0	Enables the external regulator for GPS LNA	1.8V			

Pin	Signal	I/O	Function	Туре	Comment
Reserve	d				
6	Reserved	-			
7	Reserved	-			
11	Reserved	-			
13	Reserved	-			
23	Reserved	-			
25	Reserved	-			

31	Reserved	-		
33	Reserved	-		
44	Reserved	-		
46	Reserved	-		

Table 6 Pin-out

WARNING:

Reserved pins must be left flowting.

4. POWER SUPPLY

The power supply circuitry and board layout are a very important part in the full product design and they strongly reflect on the product overall performances, hence read carefully the requirements and the guidelines that will follow for a proper design.

4.1. Power Supply Requirements

The external power supply must be connected to VBATT signal and must fulfil the following requirements:

Table 7 Power Supply Requirements

Nominal Supply Voltage	3.3V
Supply Voltage Range	3.1V ~ 3.6V
Max ripple on module input supply	30mV

NOTE:

The Operating Voltage Range MUST never be exceeded; care must be taken when designing the application's power supply section to avoid having an excessive voltage drop.

If the voltage drop is exceeding the limits it could cause a Power Off of the module.

Overshoot voltage (regarding MAX Extended Operating Voltage) and drop in voltage (regarding MIN Extended Operating Voltage) MUST never be exceeded;

The "Extended Operating Voltage Range" can be used only with completely assumption and application of the HW User guide suggestions.

4.2. Power Consumption

For the complete power consumption specification, please refer to the specific Module's Hardware User guide listed in section 1.5

4.3. General Design Rules

The principal guidelines for the Power Supply Design embrace three different design steps:

- The electrical design
- The thermal design
- The PCB layout.

4.3.1. Electrical Design Guidelines

The electrical design of the power supply depends strongly from the power source where this power is drained.

- +5V input (typically PC internal regulator output)
- +12V input (typically automotive)

4.3.1.1. +5V Source Power Supply Design Guidelines

- The desired output for the power supply is 3.3V, hence there's not a big difference between the input source and the desired output and a linear regulator can be used. A switching power supply will not be suited because of the low drop out requirements.
- When using a linear regulator, a proper heat sink shall be provided in order to dissipate the generated heat.
- A Bypass low ESR capacitor of adequate capacity must be provided in order to cut the current absorption peaks close to the Module, a 100μF capacitor is usually suited.
- Make sure the low ESR capacitor on the power supply output rated at least 10V.

An example of linear regulator with 5V input is:

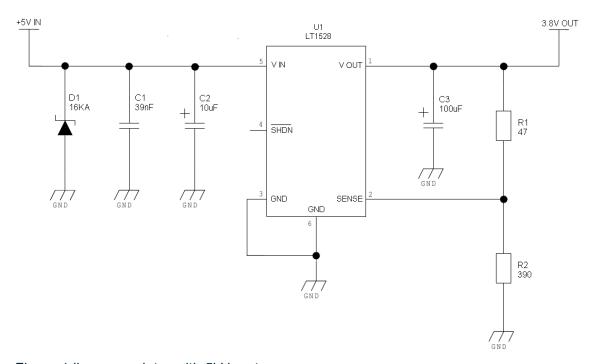


Figure 1 linear regulator with 5V input

4.3.1.2. +12V Source Power Supply Design Guidelines

- The desired output for the power supply is 3.3V, hence due to the big difference between the input source and the desired output, a linear regulator is not suited and shall not be used. A switching power supply will be preferable because of its better efficiency.
- When using a switching regulator, a 500kHz or more switching frequency regulator is preferable because of its smaller inductor size and its faster transient response. This allows the regulator to respond quickly to the current peaks absorption.
- In any case the frequency and Switching design selection is related to the application to be developed due to the fact the switching frequency could also generate EMC interferences.
- For car PB battery the input voltage can rise up to 15,8V and this should be kept in mind when choosing components: all components in the power supply must withstand this voltage.
- A Bypass low ESR capacitor of adequate capacity must be provided in order to cut the current absorption peaks, a 100µF capacitor is usually suited.
- Make sure the low ESR capacitor on the power supply output is rated at least 10V.

For Car applications, a spike protection diode should be inserted close to the power input, in order to clean the supply from spikes.

An example of switching regulator with 12V input is in the below schematic:

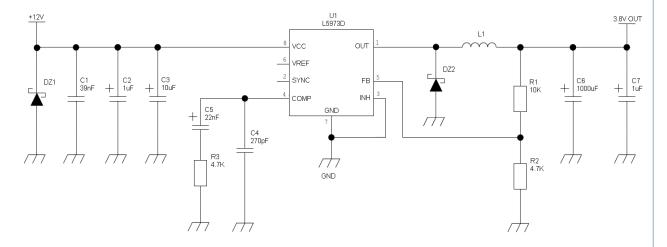


Figure 2 switching regulator 12V

4.3.2. Thermal Design Guidelines

The thermal design of the application board and the power supply heat sink should be done with the following specifications:

- Typical average current consumption during xE910Cx Mini PCle transmission @ Max PWR level at min battery level (LTE): 700 mA
- Average current during idle (USB enabled): 30 mA
- Average current during idle (USB disabled): 5 mA
- Average current during airplane mode (USB disabled): 2 mA

Considering the very low current during Idle, especially if the Power Saving function is enabled, it is possible to consider from the thermal point of view that the device absorbs significant current mainly during Data session. In LTE/WCDMA/HSPA mode, the xE910Cx Mini PCIe emits RF signals continuously during transmission. Therefore, you must pay special attention how to dissipate the heat generated.

The LE910Cx mPCle card is designed to conduct the heat flow from the module IC's towards the bottom of the mPCle PCB across GND metal layers

In order to achieve the best performance, the application board copper layers should be used to dissipate the heat out of the mPCIe card.

In order to ensure proper thermal flow from the mPCIe card to the application board, the mPCIe card bottom side should be thermally connected to the application board top side via proper thermal pad.

The area of which the thermal pad is attached to on the application board must be designed as a large ground pad (with solder mask exposed).

NOTE:

The average consumption during transmissions depends on the power level at which the device is requested to transmit by the network. The average current consumption hence varies significantly.

4.3.3. Power Supply PCB layout Guidelines

The GSM system is made in a way that the RF transmission is not continuous, else it is packed into bursts at a base frequency of about 216 Hz, and the relative current peaks can be as high as about 2.4A. Therefore the power supply has to be designed in order to withstand with these current peaks without big voltage drops; this means that both the electrical design and the board layout must be designed for this current flow. If the voltage drop during the peak current absorption is too much, then the device may even shutdown as a consequence of the supply voltage drop.

NOTE:

The electrical design for the Power supply should be made ensuring it will be capable of a peak current output of at least 2.4 A.

As seen on the electrical design guidelines the power supply shall have a low ESR capacitor on the output to cut the current peaks on the input to protect the supply from spikes. The placement of this component is crucial for the correct working of the circuitry. A misplaced component can be useless or can even decrease the power supply performances.

- The Bypass low ESR capacitor must be placed close to the Telit LE910Cx-mPCle
 power input pads or in the case the power supply is a switching type it can be
 placed close to the inductor to cut the ripple provided the PCB trace from the
 capacitor to the LE910Cx-MPCIE is wide enough to ensure a dropless connection
 even during an 1A current peak.
- The protection diode must be placed close to the input connector where the power source is drained.
- The PCB traces from the input connector to the power regulator IC must be wide enough to ensure no voltage drops occur when a 1A current peak is absorbed.
- The PCB traces to the LE910Cx-mPCIE and the Bypass capacitor must be wide enough to ensure no significant voltage drops occur. This is for the same reason as previous point. Try to keep this trace as short as possible.
- To reduce the EMI due to switching, it is important to keep very small the mesh involved; thus the input capacitor, the output diode (if not embodied in the IC) and the regulator have to form a very small loop. This is done in order to reduce the radiated field (noise) at the switching frequency (100-500 kHz usually).
- A dedicated ground for the Switching regulator separated by the common ground plane is suggested.
- The placement of the power supply on the board should be done in such a way to guarantee that the high current return paths in the ground plane are not overlapped to any noise sensitive circuitry as the microphone amplifier/buffer or earphone amplifier.
- The power supply input cables should be kept separate from noise sensitive lines such as microphone/earphone cables.
- The insertion of EMI filter on VBATT pins is suggested in those designs where antenna is placed close to battery or supply lines.

A ferrite bead like Murata BLM18EG101TN1 or Taiyo Yuden P/N FBMH1608HM101 can be used for this purpose.

The below figure shows the recommended circuit:

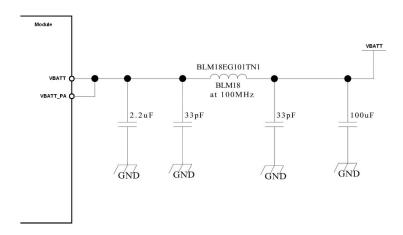


Figure 3 Power supply recommended circuit

4.4. VAUX/PWRMON Power Output

A regulated power supply output is provided to supply small devices from the module. This output is active when the module is ON and goes OFF when the module is shut down. The operating range characteristics of the supply are as follows:

Item	Min	Typical	Max
Output voltage	1.75V	1.80V	1.85V
Output current			100mA
Output bypass capacitor (inside the module)			1 μF

Table 8 VAUX/PWRMON Power Output

NOTE:

The Output Current MUST never be exceeded; care must be taken when designing the application section to avoid having an excessive current consumption.

If the Current is exceeding the limits it could cause a Power Off of the module.

Warning:

The current consumption from VAUX/PWRMON increases the modem temperature.

4.5. GNSS LNA BIAS

A dedicated regulated bias is provided to support active antenna GNSS applications. The operating range characteristics of the supply are as follows:

Item	Min	Typical	Max
Output voltage	0V	3V	3.1V
Output current			100mA

Table 9 GNSS LNA BIAS

NOTE:

Follow LE9x0 AT Command User Guide 80407ST10116A to control dedicated enable GPS_LNA_EN (pin 48) for LE910Cx-mPCle on board LNA BIAS output through GNSS antenna port.

NOTE:

In case internal bias is not sufficient, the user can add an external bias which can be controlled by pin 48 GPS_LNA_EN, using AT command. In this case a DC block should be used to avoid conflict with miniPCle adapter interrnal LDO.

5. ELECTRICAL SPECIFICATION

5.1. Absolute Maximum Ratings – Not Operational

Caution - A deviation from the value ranges listed below may harm the LM940 module.

Table 10 Absolute Maximum Ratings - Not Operational

Symbol	Parameter	Min	Max	Unit
VBATT	Battery supply voltage on pin VBATT	-0.5	4.2.0	[V]

5.2. Recommended Operating Conditions

Table 11 Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
T _{amb}	Ambient temperature	-40	+25	+85	[°C]
VBATT	Battery supply voltage on pin VBATT	3.1	3.3	3.6	[V]
I _{VBATT} +	Peak current to be used to dimension decoupling capacitors on pin VBATT	-	-	2400	[mA]

6. DIGITAL SECTION

6.1. Logic Levels

ABSOLUTE MAXIMUM RATINGS:

Parameter	Min	Max
Input level on any digital pin (CMOS 1.8) with respect to ground	-0.3V	2.16V
Input level on any digital pin (CMOS 1.8) with respect to ground	-0.3V	0.3V
when VBATT is not supplied		

Table 12 Absolute Maximum Rating CMOS 1.8V

Parameter	Min	Max
Input level on any digital pin (CMOS 3.3) with respect to ground	-0.3V	3.6V
Input level on any digital pin (CMOS 3.3) with respect to ground when VBATT is not supplied	-0.3V	0.3V

Table 13 Absolute Maximum Rating CMOS 3.3V

OPERATING RANGE - INTERFACE LEVELS 1.8V CMOS:

Parameter	Min	Max
Input high level	1.25V	1.95V
Input low level	0V	0.6V
Output high level	1.4V	
Output low level	1	0.45V
Pull-up resistance	10kΩ	390 [kΩ]
Pull-up resistance	10kΩ	390 [kΩ]
Input capacitance		5pF
Low-level input leakage current, no pull-up	-1uA	
High-level input leakage current, no pull-down		+1uA
Drive strength	2mA	16mA

Table 14 Operating Range CMOS 1.8V

OPERATING RANGE - INTERFACE LEVELS 3.3V CMOS:

Parameter	Min	Max
Input high level	2V	3.3V
Input low level	0V	0.8V
Output high level	2V	
Output low level		0.45V

Table 15 Operating Range CMOS 3.3V

OPERATING RANGE - SIM CARD PADS @2.95V:

Parameter	Min	Max
Input high level	2.1V	3.1V
Input low level	-0.3V	0.55V
Output high level	2.25V	3.1V
Output low level	0V	0.4V
Low-level input leakage current, no pull-up	-10uA	
High-level input leakage current, no pull-down		10uA
Pull-up resistance	10kΩ	100kΩ
Pull-down resistance	10kΩ	100kΩ
Input capacitance		5pF

Table 16 Operating Range SIM Card Pads

6.2. Power On

The LE910Cx-mPCle will automatically power on as soon as VBATT applied to the module. The LE910Cx-mPCle is not yet activated because the SW initialization process of the module is still in process internally. It takes some time to fully complete the HW and SW initialization of the module. For this reason, it is impossible to access LE910Cx-PCle during the Initialization state. VAUX / PWRMON pin will be then set at the high logic level when pins and interfaces are configured.

As shown below the LE910Cx-mPCle becomes operational (in the Activation state) at least 20 seconds after power is applied:

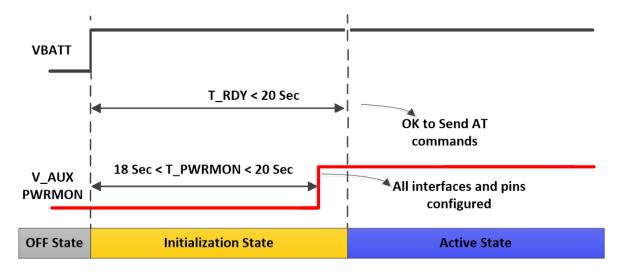
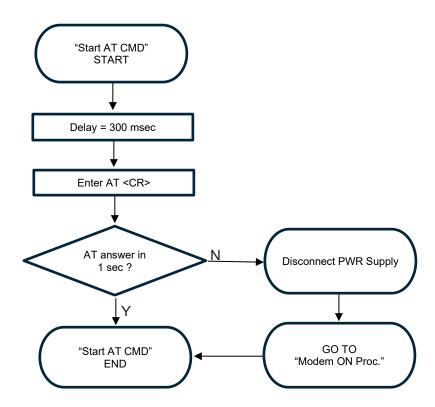


Figure 4 Power On Timing Diagram

Note:

To turn on the LE910Cx-mPCle module, the W_DISABLE_N pin must not be asserted low.



The following flow chart shows the proper turn on procedure:

Telit

A flow chart showing the AT commands managing procedure is displayed below:

6.3. Unconditional Restart

To unconditionally restart the LE910Cx-mPCle, the pad PERST_N (pin 22) must be tied low for at least 200 milliseconds and then released.

The hardware unconditional restart must not be used during normal operation of the device since it does not detach the device from the network. It shall be kept as an emergency exit procedure to be done in the rare case that the device gets stuck waiting for some network or SIM responses.

Do not use any pull up resistor on the PERST_N line nor any totem pole digital output.

Using pull up resistor may bring to latch up problems on the LE910Cx-mPCle.

The line PERST_N must be connected only in open collector configuration; the transistor must be connected as close as possible to the PERST_N pin.

The unconditional hardware restart must always be implemented on the application board as the software must be able to use it as an emergency exit procedure.

PIN DESCRIPTION

Signal	Function	I/O	PIN
PERST_N	Active low functional reset to the card	1	22

Table 17 PERST_N

OPERATING LEVELS

The PERST_N line is 3.3V tolerant as specified by PCI Express Mini Card Electromechanical Specification Revision 2.1 standard.

WARNING:

The hardware unconditional Reset must not be used during normal operation of the device since it does not detach the device from the network. It shall be kept as an emergency exit procedure.

A typical circuit for implementing an unconditional reset is shown below:

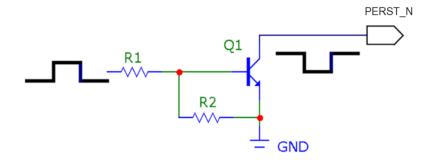


Figure 5 Recommended Reset driver circuit

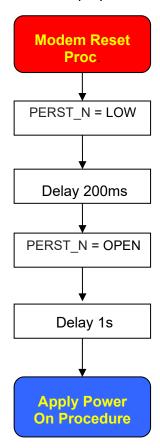
NOTE:

Recommended values R2 = $47k\Omega$, R1 = $10k\Omega$.

NOTE:

In order to avoid a back powering effect it is recommended to avoid having any HIGH logic level signal applied to the digital pins of the LE910Cx-mPCIE when the module is powered off or during a reboot transition.

Using bidirectional level translators which do not support High Z mode during power off is not recommended.


Note:

For Unconditional Restart W_DISABLE_N pin must not be asserted low otherwise the module will shutdown itself and will not restart (this can be used as emergency shutdown but not recommended)

For proper shutdown refer to section 6.4 Power OFF procedure.

Telit

In the following flow chart is detailed the proper restart procedure:

Note:

In order to prevent a back powering effect it is recommended to avoid having any HIGH logic level signal applied to the digital pins of the LE910Cx-mPCle when the module is powered OFF or during an ON/OFF transition.

Using bidirectional level translators which do not support High Z mode during power off is not recommended.

6.4. Power OFF procedure

To turn OFF the LE910Cx-mPCle module, the W_DISABLE_N pin must be asserted low, otherwise the module will be power up immediately. For proper shutdown operation use AT#SHDN command. When a shutdown command is sent, LE910Cx goes into the finalization state and at the end of the finalization process shuts down PWRMON. The duration of the finalization state can differ according to the current situation of the module, so a value cannot be defined.

Usually, it will take more than 15 seconds from sending a shutdown command until reaching a complete shutdown. The DTE should monitor the status of PWRMON to observe the actual power-off.

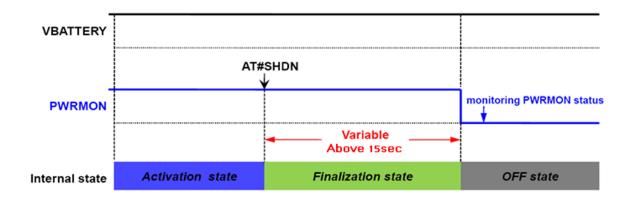
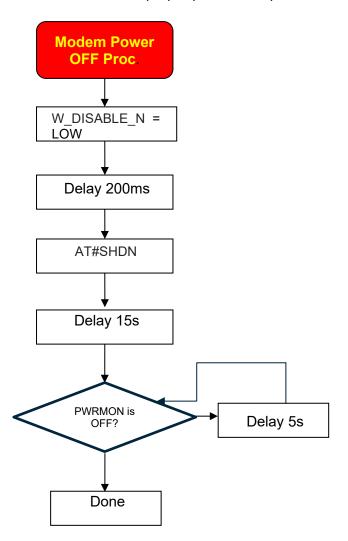


Figure 6 Shutdown by Software Command


WARNING:

Please carefully follow the recommended procedure for Power Off. Removing the power supply can only be done when the unit has reached power off state.

Not following the recommended shut-down and power off procedures might damage the device and consequently void the warranty.

Telit

The below flow chart is detailed the proper power OFF procedure:

Note:

Software shutdown feature is not supported on early engeeniring samples.

6.5. Control signals

Pin	Signal	I/O	Function	Туре
1	WAKE_N	0	Active low signal used to wake up the system from stand-by	3.3V
20	W_DISABLE_N	I	Active low signal for wireless disabling (Airplane mode)	3.3V
22	PERST_N	I	Active low functional reset to the card	3.3V
42	LED_WWAN_N	0	Active low, open drain signal for WWAN LED driving, used to provide module's status indication	3.3V
48	GPS_LNA_EN	0	Enables the external regulator for GPS LNA	1.8V

Table 18 Control signals

6.5.1. WAKE N

WAKE_N is driven, by default, by the module according the PCI Express Mini Card Electromechanical Specification Revision 2.1.

NOTE:

WAKE_N is not supported in host using PCI Express Mini Card Electromechanical Specification Revision 1.1 and below.

NOTE:

WAKE_N signal is not active by default. if desired it can be configured remapping an event under monitoring through at#evmoni. for details refer to the at command user guide.

The below picture shows the internal WAKE_N driver

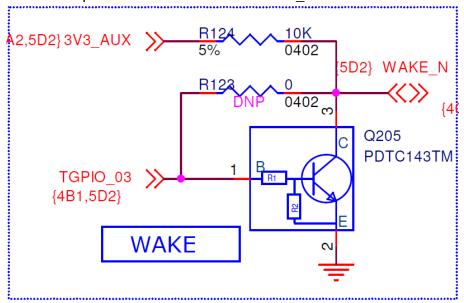


Figure 7 WAKE_N internal driver

WAKE_N output may be connected to an edge sensitive application input (e.g. a microcontroller input with IRQ enabled). No external pull-up is needed, since it is internally implemented.

EXAMPLE: In the following example, a RING monitor activates the WAKEUP signal. (For more information read Event Monitor Application Note 80000NT10028a).

AT#ENAEVMONI=0	//disable all events
AT#GPIO=3,0,1	//Set GPIO3=>'0', "WAKE signal reset"
AT#ENAEVMONICFG=3,1,2	//AT port setting
AT#EVMONI="RING",0,1,3	//event 0-RING, after 3 rings
AT#EVMONI="RING",0,0,"AT#GPIO=3,1,1"	//GPIO3=>'1', "WAKE signal active"
AT#EVMONI="RING",1	//event 0-RING enabled
AT#EVMONI="GPIO1",1,1,3	//event 1-GPIO3
AT#EVMONI="GPIO1",1,2,1	//when goes hi
AT#EVMONI="GPIO1",1,3,5	//after 5s
AT#EVMONI="GPIO1",1,0," AT#GPIO=3,0,1"	//Set GPIO3=>'0', "WAKE signal
	///reset"
AT#EVMONI="GPIO1",1	//event 1-GPIO3 enabled
AT#ENAEVMONI=1	//enable all events

6.5.2. W DISABLE N

W_DISABLE_N is used to force the module into airplane mode. Thanks to its internal pullup, leaving this pin unconnected allows the module to operate normally. This switch follows the behavior as described in the PCI Express Mini Card Electromechanical Specification Revision 2.1.

6.5.3. LED WWAN N

LED_WWAN# is driven, by default, by the module according the PCI Express Mini Card Electromechanical Specification Revision 2.1. If desired, LED behavior can be configured by adjusting software settings. The following picture shows the internal LED_WWAN_N driver and recommended connection to a LED:

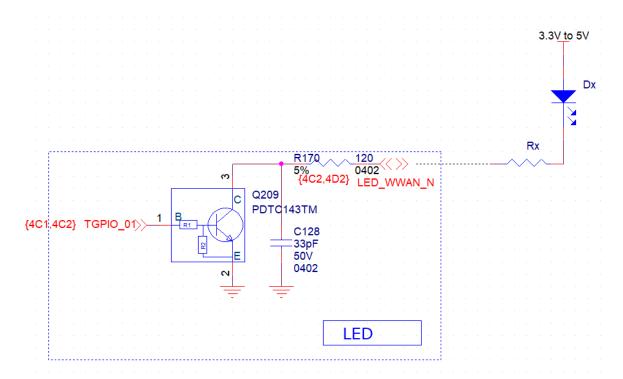


Figure 8 LED_WWAN_N internal driver

NOTE:

THIS SIGNAL IS NOT ACTIVE BY DEFAULT. REFER TO AT#SLED DESCRIPTION IN THE AT COMMAND USER GUIDE

6.5.4. PERST N

PERST_N is used to reset the LE910Cx-mPCle. Whenever this signal is pulled low, the LE910Cx-mPCle is reset. When the device is reset it stops any operation. After the release of the reset the LE910Cx is unconditionally restarted, without doing any detach operation from the network where it is registered. The reset signal must not be used to normally restart the device, but only as an emergency exit in the rare case the device remains stuck waiting for some network response.

PERST_N is internally controlled on start-up to achieve a proper power-on reset sequence, so there's no need to control this pin on start-up. It may only be used to reset a device already on that is not responding to any command.

NOTE:

Do not use this signal to power cycle the LE910Cx-mPCle. Use the AT#SHDN command instead.

Parameter	Min	Max
PERST_N Input high	2.0V	3.6V
PERST_N Input low	-0.5V	0.8V

Table 19 PERST N operating levels

6.6. Hardware Interfaces

Following table below summarize the hardware interfaces for LE910Cx-mPCle:

Interface	LE910Cx-mPCle	
USB	USB2.0	
12C	For sensors, audio control	
UART	HS-UART (up to 4 Mbps)	
Audio I/F	I2S/PCM	
USIM	Dual voltage (1.8V/2.85V)	
Antenna ports	2 for Cellular, 1 for GNSS	

Table 20 Hardware Interfaces

6.6.1. USB Port

The LE910Cx-mPCIe module includes a Universal Serial Bus (USB) transceiver, which operates at USB high-speed (480 Mbits/sec). It can also operate with USB full-speed hosts (12 Mbits/sec).

It is compliant with the USB 2.0 specification and can be used for control and data transfers as well as for diagnostic monitoring and firmware update.

The USB port is typically the main interface between the LE910Cx-mPCle module and OEM hardware.

NOTE:

The USB_D+ and USB_D- signals have a clock rate of 480 MHz. The signal traces must be routed carefully. Minimize trace lengths, number of vias, and capacitive loading. The impedance value should be as close as possible to 90 Ohms differential.

Table Below lists the USB interface signals:

Signal	Pin No	Usage
USB_D-	36	Minus (-) line of the differential, bi-directional USB signal to/from the peripheral device
USB_D+	38	Plus (+) line of the differential, bi-directional USB signal to/from the peripheral device

Table 21 USB Interface

NOTE:

USB_VBUS controlled internally by TGPIO_10. For disabling/enabling use at commands via <u>UART port</u>. For example: at#gpio=10,0,1 will disable USB_VBUS at#gpio=10,1,1 will ebable USB_VBUS For more information follow 80407ST10116A, LE9x0 AT Command User Guide.

NOTE:

Even if USB communication is not used, it is still highly recommended to place an optional USB connector on the application board. At least test points of the USB signals are required since the USB physical communication is needed in the case of SW update.

6.6.2. Serial Port

The serial port is typically a secondary interface between the LE910Cx-mPCle module and OEM hardware. MODEM SERIAL PORT 1(Main) is available on LE910Cx-mPCle adaptor

Several configurations can be designed for the serial port on the OEM hardware.

The most common configurations are:

- RS232 PC com port
- Microcontroller UART @ 1.8V (Universal Asynchronous Receive Transmit)
- Microcontroller UART @ 3.3V/5V or other voltages different from 1.8V

Depending on the type of serial port on the OEM hardware, a level translator circuit may be needed to make the system operate. The only configuration that does not need level translation is the 1.8V UART.

The levels for LE910Cx UART are the CMOS levels as described in 6.1 Logic Levels

6.6.2.1. Modem Serial Port 1 Signals

Serial Port 1 on LE910Cx-mPCle is a +1.8V UART with 4 RS232 signals. It differs from the PC-RS232 in signal polarity (RS232 is reversed) and levels.

List of the signals of LE910Cx-mPCle serial port:

RS232 Pin No.	Signal	Pin No.	Name	Usage
2	RXD - UART_TX	5	Transmit line	Output transmit line of the LE910Cx-mPCle UART
3	TXD - UART_RX	3	Receive line	Input receive line of the LE910Cx-mPCle UART
5	GND	4,9,15	Ground	Ground
7	RTS - UART_CTS	19	Request to Send	Input to LE910Cx-mPCle controlling the Hardware flow control
8	CTS - UART_RTS	17	Clear to Send	Output from LE910Cx- mPCle controlling the Hardware flow control

Table 22 Modem Serial Port 1 Signals

NOTE:

To avoid a back-powering effect, it is recommended to avoid having any HIGH logic level signal applied to the digital pins of the module when it is powered OFF or during an ON/OFF transition.

NOTE:

For minimum implementations, only the TXD and RXD lines need be connected. The other lines can be left open provided a software flow control is implemented.

6.6.2.2. RS232 Level Translation

To interface the LE910Cx-mPCle with a PC com port or a RS232 (EIA/TIA-232) application, a level translator is required. This level translator must:

- Invert the electrical signal in both directions
- Change the level from 0/1.8V to +15/-15V

The RS232 UART 16450, 16550, 16650 & 16750 chipsets accept signals with lower levels on the RS232 side (EIA/TIA-562), allowing a lower voltage-multiplying ratio on the level translator. Note that the negative signal voltage must be less than 0V and hence some sort of level translation is always required.

The simplest way to translate the levels and invert the signal is by using a single chip-level translator. There are a multitude of them, differing in the number of drivers and receivers and in the levels (be sure to get a true RS232 level translator, not a RS485 or other standards).

By convention, the driver is the level translator from the 0-1.8V UART to the RS232 level. The receiver is the translator from the RS232 level to 0-1.8V UART.

To translate the whole set of control lines of the UART, the following is required:

- 1 driver
- 1 receiver

NOTE:

The digital input lines operating at 1.8V CMOS therefore, the level translator IC must not be powered by the +3.8V supply of the module. Instead, it must be powered from a dedicated +1.8V power supply.

RS232 Level Adaption Circuitry Example:

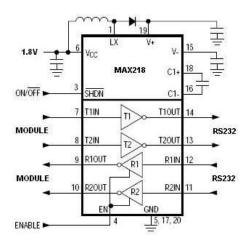


Figure 9 Level Adapter Example

NOTE:

In this case, the length of the lines on the application must be taken into account to avoid problems in the case of High-speed rates on RS232.

The RS232 serial port lines are usually connected to a DB9 connector as shown in a Figure below. Signal names and directions are named and defined from the DTE point of view. RS232 Serial Port Lines Connection Layout:

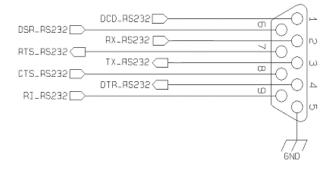


Figure 10 RS232 DB-9 pinout

6.6.3. I2C - Inter-integrated Circuit

The LE910Cx-mPCIe supports an I2C interface on the following pins:

- Pin 30 I2C SCL
- Pin 32 I2C_SDA

The I2C can also be used externally by the end customer application.

LE910Cx-mPCle supports I2C Master Mode only.

NOTE:

Both I2C lines pulled up internally $2.2k\Omega$ to 1.8V.

6.6.4. Digital Audio

The LE910Cx-mPCle module can be connected to an external codec through the digital interface.

The product provides a single Digital Audio Interface (DVI) on the following pins:

Digital Audio Interface (DVI) Signals:

Pin	Signal	I/O	Function	Туре	COMMENT
51	PCM_SYNC	I/O	Digital Audio Interface (WAO)	B-PD 1.8V	PCM_SYNC
49	PCM_RX	I	Digital Audio Interface (RX)	B-PD 1.8V	PCM_DIN
47	PCM_TX	0	Digital Audio Interface (TX)	B-PD 1.8V	PCM_DOUT
45	PCM_CLK	I/O	Digital Audio Interface (CLK)	B-PD 1.8V	PCM_CLK
16	REF_CLK	0	Audio Master Clock	B-PD 1.8V	I2S_MCLK

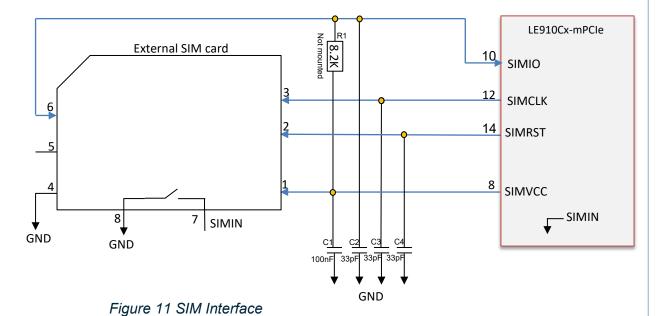
Table 23 Digital Audio Interface

LE910Cx-mPCle DVI has the following characteristics:

- PCM Master mode or Slave mode using short or long frame sync modes
- 16 bit linear PCM format
- PCM clock rates of 256 kHz, 512 kHz, 1024 kHz and 2048 kHz (Default)
- Frame size of 8, 16, 32, 64, 128 & 256 bits per frame
- Sample rates of 8 kHz and 16 kHz

In addition to the DVI port, the LE910Cx-mPCle module provides a master clock signal (REF_CLK on Pin 16) which can either provide a reference clock to an external codec or form an I2S interface together with the DVI port where the REF_CLK acts as the I2S MCLK.

The REF CLK default frequency is 12.288 MHz.


When using the DVI with REF_CLK as an I2S interface, 12.288 MHz is 256 x fs (where fs = 48 kHz).

For timing diagrams refer to LE910Cx module Hardware Design Guide at 1.5

6.7. SIM Interface

The SIM pins provide the connections necessary to interface to a SIM socket located on the host device. Voltage levels over this interface comply with 3GPP standards. SIMIN line terminated to GND internally for standard LE910Cx-mPCle variant without either SIM holder or onboard eSIM.

Pin Signal 1/0 **Function Type** 8 SIMVCC 0 External SIM signal - Power supply for the SIM 1.8 / 3V I/O 10 SIMIO External SIM signal - Data I/O 1.8 / 3V 12 **SIMCLK** 0 1.8 / 3V External SIM signal - Clock 14 **SIMRST** 0 1.8 / 3V External SIM signal - Reset

Table 24 SIM Interface signals

NOTE:

The resistor value on SIMIO pulled up to SIMVCC should be defined accordingly in order to be compliant with 3GPP specification.

LE910Cx-mPCle contains an internal pull-up resistor on SIMIO.

However, the un-mounted option in the application design can be recommended in order to tune R1 if necessary.

7. RF SECTION

7.1. Bands Variants

Please refer to the table provided in section 2.2

7.2. TX and RX characteristics

Please refer to the Module's Hardware User guide for the details

7.3. Antenna requirements

7.3.1. Antenna Connectors

The LE910Cx Mini PCIe adapter is equipped with a set of 50 Ω RF U.FL. connectors from Hirose U.FL-R-SMT-1(10).

The available connectors are:

- RX Diversity Antenna (DIV)
- Main RF antenna (ANT)
- GNSS Antenna (GPS) -

See the picture on the right for their position on the interface.

The presence of all the connectors is depending on the product characteristics and supported functionalities.

For more information about mating connectors, visit the website

http://www.hirose-connectors.com/

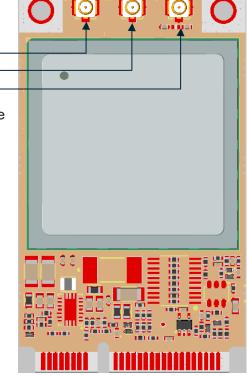


Figure 12 UFL Antenna Connectors

The antenna connection is one of the most important aspect in the full product design as it strongly affects the product overall performances, hence read carefully and follow the requirements and the guidelines for a proper design.

The LE910Cx-mPCIe adapter is provided with three RF connectors.

The available connectors are:

- Main RF antenna (ANT)
- RX Diversity Antenna (DIV)
- GNSS Antenna (GPS)

Connecting cables between the module and the antenna must have 50 Ω impedance. If the impedance of the module is mismatched, RF performance is reduced significantly. If the host device is not designed to use the module's diversity or GPS antenna, terminate the interface with a 50Ω load.

7.3.2. Main GSM/WCDMA/LTE Antenna Requirements

The antenna for the LE910Cx-mPCle device must meet the following requirements:

Item	Value
Frequency range	The customer must use the most suitable antenna band width for covering the frequency bands provided by the network operator while using the Telit module.
	The bands supported by each variant of the xE910Cx module family are provided in Section 2.2 Product Variants and Frequency Bands
Gain	Gain < 3 dBi
Impedance	50 ohm
Input power	> 33 dBm(2 W) peak power in GSM > 24 dBm average power in WCDMA & LTE
VSWR absolute max	≤ 10:1 (limit to avoid permanent damage)
VSWR recommended	≤ 2:1 (limit to fulfill all regulatory requirements)

Table 25 Main Antenna Requirements

7.3.3. Antenna Diversity Requirements

This product includes an input for a second Rx antenna to improve radio sensitivity. The function is called Antenna Diversity.

Item	Value
Frequency range	The customer must use the most suitable antenna band width for covering the frequency bands provided by the network operator while using the Telit module.
	The bands supported by each variant of the xE910Cx module family are provided in Section 2.2 Product Variants and Frequency Bands
Impedance	50 ohm
VSWR recommended	≤ 2:1 (limit to fulfill all regulatory requirements)

Table 26 Diversity Antenna Requirements

7.3.4. GNSS Antenna Requirements

LE910Cx modules supports an active antenna. LNA BIAS provided by onboard 3V, 100mA Linear Regulator. Follow LE9x0 AT Command User Guide 80407ST10116A to control GPS_LNA_EN (pin 48).

It is recommended to use antennas as follow:

- An external active antenna (17dB typ. Gain, GPS only)
- An external active antenna plus GNSS pre-filter (17dB typ. Gain)

NOTE:

The external GNSS pre-filter is required for the GLONASS application.

The GNSS pre-filter must meet the following requirements:

Source and load impedance = 50 Ohm

- Insertion loss (1575.42–1576.42 MHz) = 1.4 dB (Max)
- Insertion loss (1565.42–1585.42 MHz) = 2.0 dB (Max)
- Insertion loss (1597.5515–1605.886 MHz) = 2.0 dB (Max)

NOTE:

It is recommended to add a DC block to the customer's GPS application to prevent damage to the LE910Cx-mPCle module due to unwanted DC voltage.

7.3.4.1. Combined GNSS Antenna

The use of a combined RF/GNSS antenna is NOT recommended. This solution can generate an extremely poor GNSS reception. In addition, the combination of antennas requires an additional diplexer, which adds significant power loss in the RF path.

7.3.4.2. Linear and Patch GNSS Antenna

Using this type of antenna introduces at least 3 dB of loss compared to a circularly polarized (CP) antenna. Having a spherical gain response instead of a hemispherical gain response can aggravate the multipath behavior and create poor position accuracy.

NOTE:

Please refer to the Module's Hardware User Guide for detailed information about GPS operating modes and RF signal requirements.

8. MECHANICAL DESIGN

8.1. Mechanical Dimensions

The LE910Cx-mPCle overall dimensions are:

Length: 50.95 mmWidth: 30 mm

• Thickness 3.2 mm (Version with SIM holder: 4.62 mm)

• Weight: 7 gr

8.1.1. Mechanical Drawing

8.1.2. Top View

The figure below shows mechanical top view of the LE910Cx-mPCle

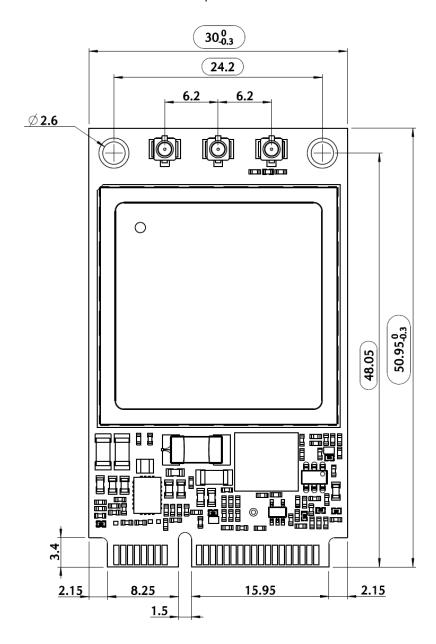


Figure 13 LE910Cx-mPCIe Top View (Dimensions are in mm)

1VV0301510 Rev. 8 Page **61** of **78** 2019-08-13

8.1.3. Bottom View

The figure below shows mechanical bottom view of the LE910Cx-mPCle as seen from bottom side. The figure shows the SIM holder although by default it is not mounted.

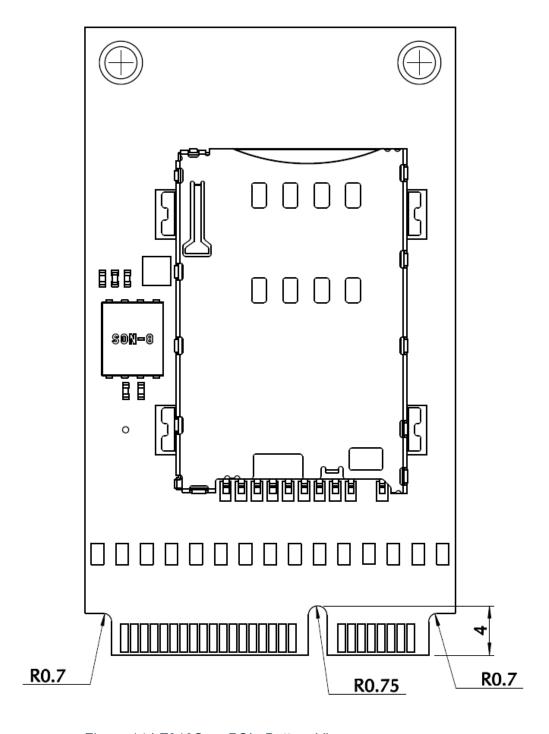


Figure 14 LE910Cx-mPCle Bottom View

8.1.4. Side View

The figure below shows mechanical side view of the LE910Cx-mPCle.

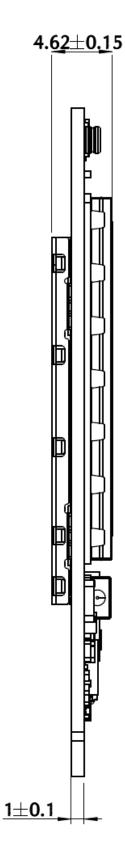


Figure 15 LE910Cx-mPCle Side View

9. APPLICATION PCB DESIGN

The LE910Cx-mPCIe modules have been designed in order to be compliant with a standard lead-free SMT process.

9.1. Recommended footprint for the application

LE910Cx-mPCle modules fits any full mPCle 52 pin socket and latch connectors compliant with PCl Express Mini Card Electromechanical Specification Revision 2.1

Given below example of board connector (MM60-52B1-E1-R650, JAE) and latch (MM60-EZH059-B5-R650, JAE) footprint for reference only:

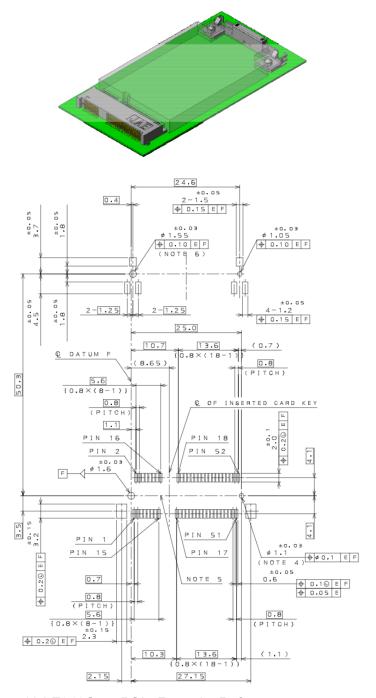


Figure 16 LE910Cx-mPCle Footprint Reference

10. EMC RECOMMENDATIONS

All LE910Cx-mPCle signals are provided with some EMC protection. Nevertheless, the accepted level differs according to the specific pin.

EMC Recommendations:

Pad	Signal	1/0	Function	Contact	Air
All Pins					
	All pins		All functions	± 4KV	± 8KV
Antenna					
	Antenna connectors	Analog I/O	Antenna connectors	± 4KV	± 4KV

Table 27 EMC RECOMMENDATIONS

Appropriate series resistors must be considered to protect the input lines from overvoltage.

11. PACKING SYSTEM

11.1. Tray

The LE910Cx-mPCle modules are packaged on trays of 20 pieces each:

Modules per	Trays per	Modules per	Envelopes per Carton	Modules per
Tray	Envelope	Envelope	Box	Box
20	5 + 1 empty	100	5	500

Table 28 Tray Packing

Order Type	Quantity
Minimum Order Quantity (MOQ)	20
Standard Packing Quantity (SPQ)	500

Table 29 Packing Quantities

Telit

Tray organization is shown in the figure below

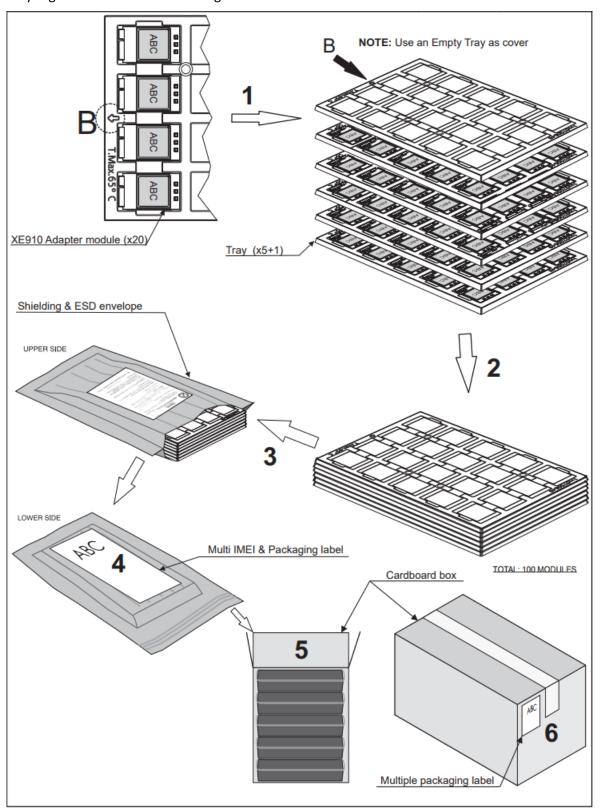


Figure 17 LE910Cx-mPCle Tray organization

11.2. Tray Drawing

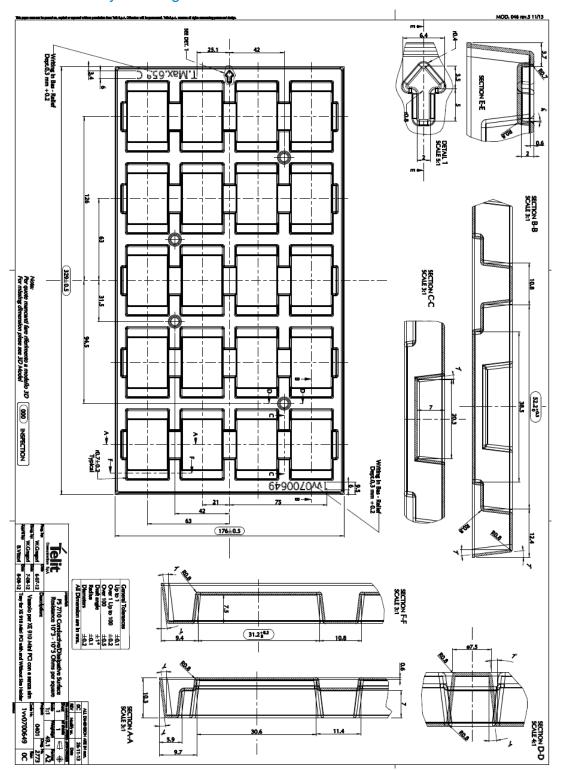


Figure 18 LE910Cx-mPCle Tray Drawing

WARNING:

These trays can withstand a maximum temperature of 65°C.

11.3. Moisture sensitivity

The LE910Cx-mPCle is a Moisture Sensitive Device level 3, in according with standard IPC/JEDEC J-STD-020, take care all the relatives requirements for using this kind of components.

Moreover, the customer has to take care of the following conditions:

- a) Calculated shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH).
- b) Environmental condition during the production: 30°C / 60% RH according to IPC/JEDEC J-STD-033A paragraph 5.
- c) The maximum time between the opening of the sealed bag and the reflow process must be 168 hours if condition b) "IPC/JEDEC J-STD-033A paragraph 5.2" is respected
- d) Baking is required if conditions b) or c) are not respected
- e) Baking is required if the humidity indicator inside the bag indicates 10% RH or more

12. CONFORMITY ASSESSMENT ISSUES

12.1. Declaration of Conformity

Hereby, Telit Communications S.p.A declares that the LE910Cx-mPCle is in compliance with Directive 2014/53/EU.

The full text of the EU declaration of conformity is available at the following internet address: http://www.telit.com\red

13. SAFETY RECOMMENDATIONS

13.1. READ CAREFULLY

Be sure the use of this product is allowed in the country and in the environment required. The use of this product may be dangerous and has to be avoided in the following areas:

- Where it can interfere with other electronic devices in environments such as hospitals, airports, aircrafts, etc.
- Where there is risk of explosion such as gasoline stations, oil refineries, etc. It is the
 responsibility of the user to enforce the country regulation and the specific
 environment regulation.

Do not disassemble the product; any mark of tampering will compromise the warranty validity. We recommend following the instructions of the hardware user guides for correct wiring of the product. The product has to be supplied with a stabilized voltage source and the wiring has to be conformed to the security and fire prevention regulations. The product has to be handled with care, avoiding any contact with the pins because electrostatic discharges may damage the product itself. Same cautions have to be taken for the SIM, checking carefully the instruction for its use. Do not insert or remove the SIM when the product is in power saving mode.

The system integrator is responsible for the functioning of the final product; therefore, care has to be taken to the external components of the module, as well as any project or installation issue, because the risk of disturbing the GSM network or external devices or having impact on the security. Should there be any doubt, please refer to the technical documentation and the regulations in force. Every module has to be equipped with a proper antenna with specific characteristics. The antenna has to be installed with care in order to avoid any interference with other electronic devices and has to guarantee a minimum distance from the body (20 cm). In case this requirement cannot be satisfied, the system integrator has to assess the final product against the SAR regulation.

The European Community provides some Directives for the electronic equipment introduced on the market. All of the relevant information is available on the European Community website:

http://ec.europa.eu/enterprise/sectors/rtte/documents/

The text of the Directive 99/05 regarding telecommunication equipment is available,

while the applicable Directives (Low Voltage and EMC) are available at:

http://ec.europa.eu/enterprise/sectors/electrical/

14. REFERENCE TABLE OF RF BANDS CHARACTERISTICS

Mode	Freq. Tx (MHz)	Freq. Rx (MHz)	Channels	Tx-Rx Offset
PCS 1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8	512 ~ 810	80 MHz
DCS 1800	1710 ~ 1785	1805 ~ 1880	512 ~ 885	95 MHz
GSM 850	824.2 ~ 848.8	869.2 ~ 893.8	128 ~ 251	45 MHz
ECCM 000	890 ~ 915	935 ~ 960	0~124	45 MHz
EGSM 900	880 ~ 890	925 ~ 935	975 ~ 1023	45 MHz
WCDMA 2100 – B1	1920 ~ 1980	2110~2170	Tx: 9612 ~ 9888 Rx: 10562 ~ 10838	190 MHz
WCDMA 1900 – B2	1850 ~ 1910	1930 ~ 1990	Tx: 9262 ~ 9538 Rx: 9662 ~ 9938	80 MHz
WCDMA 1800 – B3	1710 ~ 1785	1805 ~ 1880	Tx: 937 ~ 1288 Rx: 1162 ~ 1513	95 MHz
WCDMA AWS – B4	1710 ~ 1755	2110 ~ 2155	Tx: 1312 ~ 1513 Rx: 1537 ~ 1738	400 MHz
WCDMA 850 – B5	824 ~ 849	869 ~ 894	Tx: 4132 ~ 4233 Rx: 4357 ~ 4458	45 MHz
WCDMA 900 – B8	880 ~ 915	925 ~ 960	Tx: 2712 ~ 2863 Rx: 2937 ~ 3088	45 MHz
WCDMA 1800 – B9	1750 ~ 1784.8	1845 ~ 1879.8	Tx: 8762 ~ 8912 Rx: 9237 ~ 9387	95 MHz
WCDMA 800 – B19	830 ~ 845	875 ~ 890	Tx: 312 ~ 363 Rx: 712 ~ 763	45 MHz
TDS CDMA 2000 – B34	2010 ~ 2025	2010 ~ 2025	Tx: 10054 ~ 10121 Rx: 10054 ~ 10121	0 MHz
TDS CDMA 1900 – B39	1880 ~ 1920	1880 ~ 1920	Tx: 9404 ~ 9596 Rx: 9404 ~ 9596	0 MHz
LTE 2100 – B1	1920 ~ 1980	2110 ~ 2170	Tx: 18000 ~ 18599 Rx: 0 ~ 599	190 MHz

Mode	Freq. Tx (MHz)	Freq. Rx (MHz)	Channels	Tx-Rx Offset
LTE 1900 – B2	1850 ~ 1910	1930 ~ 1990	Tx: 18600 ~ 19199 Rx: 600 ~ 1199	80 MHz
LTE 1800 – B3	1710 ~ 1785	1805 ~ 1880	Tx: 19200 ~ 19949 Rx: 1200 ~ 1949	95 MHz
LTE AWS – B4	1710 ~ 1755	2110 ~ 2155	Tx: 19950 ~ 20399 Rx: 1950 ~ 2399	400 MHz
LTE 850 – B5	824 ~ 849	869 ~ 894	Tx: 20400 ~ 20649 Rx: 2400 ~ 2649	45 MHz
LTE 2600 – B7	2500 ~ 2570	2620 ~ 2690	Tx: 20750 ~ 21449 Rx: 2750 ~ 3449	120 MHz
LTE 900 – B8	880 ~ 915	925 ~ 960	Tx: 21450 ~ 21799 Rx: 3450 ~ 3799	45 MHz
LTE 1800 – B9	1749.9 ~ 1784.9	1844.9 ~ 1879.9	Tx: 21800 ~ 2149 Rx: 3800 ~ 4149	95 MHz
LTE AWS+ – B10	1710 ~ 1770	2110~2170	Tx: 22150 ~ 22749 Rx: 4150 ~ 4749	400 MHz
LTE 700a – B12	699 ~ 716	729 ~ 746	Tx: 23010 ~ 23179 Rx: 5010 ~ 5179	30 MHz
LTE 700c – B13	777 ~ 787	746 ~ 756	Tx: 23180 ~ 23279 Rx: 5180 ~ 5279	-31 MHz
LTE 700PS – B14	788 ~ 798	758 ~ 768	Tx: 23280 ~ 23379 Rx: 5280 ~ 5379	-30 MHz
LTE 700b – B17	704 ~ 716	734 ~ 746	Tx: 23730 ~ 23849 Rx: 5730 ~ 5849	30 MHz
LTE 800 – B19	830 ~ 845	875 ~ 890	Tx: 24000 ~ 24149 Rx: 6000 ~ 6149	45 MHz
LTE 800 – B20	832 ~ 862	791 ~ 821	Tx: 24150 ~ 24449 Rx: 6150 ~ 6449	-41 MHz

Mode	Freq. Tx (MHz)	Freq. Rx (MHz)	Channels	Tx-Rx Offset
LTE 1500 – B21	1447.9 ~ 1462.9	1495.9 ~ 1510.9	Tx: 24450 ~ 24599 Rx: 6450 ~ 6599	48 MHz
LTE 1900+ – B25	1930 ~ 1995	1850 ~ 1915	Tx: 26040 ~ 26689 Rx: 8040 ~ 8689	80 MHz
LTE 850+ – B26	814~849	859 ~ 894	Tx: 26690 ~ 27039 Rx: 8690 ~ 9039	45 MHz
LTE 700 – B28A	703 ~ 733	758 ~ 788	Tx: 27210 ~ 27510 Rx: 9210 ~ 9510	55 MHz
LTE 700 – B28	703 ~ 748	758 ~ 803	Tx: 27210 ~ 27659 Rx: 9210 ~ 9659	55 MHz
LTE AWS-3 – B66	1710 ~ 1780	2210 ~ 2200	Tx: 131972-132671 Rx: 66436-67335	400 MHz
LTE600 - B71	663 ~ 698	617 ~ 652	Tx: 133122-133471 Rx: 68568-68935	46 MHz
LTE TDD 2600 – B38	2570 ~ 2620	2570 ~ 2620	Tx: 37750 ~ 38250 Rx: 37750 ~ 38250	0 MHz
LTE TDD 1900 – B39	1880 ~ 1920	1880 ~ 1920	Tx: 38250 ~ 38650 Rx: 38250 ~ 38650	0 MHz
LTE TDD 2300 – B40	2300 ~ 2400	2300 ~ 2400	Tx: 38650 ~ 39650 Rx: 38650 ~ 39650	0 MHz
LTE TDD 2500 – B41M	2555 ~ 2655	2555 ~ 2655	Tx: 40265 ~ 41215 Rx: 40265 ~ 41215	0 MHz

Table 30 REFERENCE TABLE OF RF BANDS

15. ACRONYMS

TTSC	Telit Technical Support Centre
USB	Universal Serial Bus
HS	High Speed
DTE	Data Terminal Equipment
UMTS	Universal Mobile Telecommunication System
WCDMA	Wideband Code Division Multiple Access
HSDPA	High Speed Downlink Packet Access
HSUPA	High Speed Uplink Packet Access
UART	Universal Asynchronous Receiver Transmitter
HSIC	High Speed Inter Chip
SIM	Subscriber Identification Module
SPI	Serial Peripheral Interface
ADC	Analog – Digital Converter
DAC	Digital – Analog Converter
I/O	Input Output
GPIO	General Purpose Input Output
CMOS	Complementary Metal – Oxide Semiconductor
MOSI	Master Output – Slave Input
MISO	Master Input – Slave Output
CLK	Clock
MRDY	Master Ready

SRDY	Slave Ready
CS	Chip Select
RTC	Real Time Clock
РСВ	Printed Circuit Board
ESR	Equivalent Series Resistance
VSWR	Voltage Standing Wave Radio
VNA	Vector Network Analyzer
RED	Radio Equipment Directive

Table 31 ACRONYMS

16. DOCUMENT HISTORY

Revision	Date	Changes
1	2018-01-11	First issue
2	2018-02-28	Updated weight Added note related to Power Down / Off
3	2018-06-11	Section 2.2 – Updated product Variants and Frequency Bands Section 3.1 – Updated pinout table Section 4.3.2 – Updated thermal design guidelines Section 14 - Updated frequency table
4	2018-06-20	Section 1.5 – Updated reference documents Section 2.2 – Updated product Variants and Frequency Bands Section 4.1 & 5.2 – Updated operating voltage settings
5	2018-11-21	Section 4.3.1.3 – Deleted Battery Source Power Supply Design Guide
6	2018-12-04	Add Variants – LE910C1-NF, LE910C4-EU, LE910C1-SA, LE910C1-ST, LE910C1-SV, LE910C1-LA
7	2019-06-17	Section 2.2 – Updated product Variants Section 2.7.1 – Updated Dimensions Section 11.3 – Updated moisture sensitivity from level 3 to level 1
8	2019-08-13	Section 3.1 – added 'WARNING' to inform there are two types of mPCle modules; V1 and V2

Table 32 DOCUMENT HISTORY

SUPPORT INQUIRIES

Link to **www.telit.com** and contact our technical support team for any questions related to technical issues.

www.telit.com

Telit Communications S.p.A. Via Stazione di Prosecco, 5/B I-34010 Sgonico (Trieste), Italy

Telit IoT Platforms LLC 5300 Broken Sound Blvd, Suite 150 Boca Raton, FL 33487, USA Telit Wireless Solutions Inc. 3131 RDU Center Drive, Suite 135 Morrisville, NC 27560, USA

Telit Wireless Solutions Co., Ltd. 8th Fl., Shinyoung Securities Bld. 6, Gukjegeumyung-ro8-gil, Yeongdeungpo-gu Seoul, 150-884, Korea Telit Wireless Solutions Ltd. 10 Habarzel St. Tel Aviv 69710, Israel

Telit Wireless Solutions Technologia e Servicos Ltda Avenida Paulista, 1776, Room 10.C 01310-921 São Paulo, Brazil

Telit reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. The information contained herein is provided "as is". No warranty of any kind, either express or implied, is made in relation to the accuracy, reliability, fitness for a particular purpose or content of this document. This document may be revised by Telit at any time. For most recent documents, please visit www.telit.com

Copyright © 2016, Telit