
Error message in the debug window during script running : " Memory Block Error: Invalid size "

Solution:

maybe the problem of the " Memory Block Error: Invalid size " is in a too big number of names

loaded in an internal dictionary at each startup from the Python task (in this case the names in all

the .py files used in your Python project) . Please read the Memory Limits paragraph in the easy

script user guide

Another cause could be that one or more pyo files are bigger than 16KB

You could try to use some of the advices/tips in the following to optimize your code and decide

about the best strategy.

1- re-use a same variable name in different .py files

2-consider that no space is allocated in the names list for the strings delimited by '' or "" AND

ending with \r. In this case you could try to use a method similar to the method

removeCRfrom(string) in the file testStrArg.py enclosed, to use strings and save space in the

dictionary.

Pay attention that all the strings with the same name in all py files of your project (e.g.

'same_name') have to be transformed in name +\r (e.g. 'same_name\r'), otherwise you will not

have any benefit, and check if the not running version becomes a running version.

3- reduce the dimension of the compiled file .pyo <16 KB , by splitting the source file in more files

and check the related pyo dimensions

to debug the names loaded at the Python start-up you can use the rtd tool and activate the tasks:

PYTraceDetails , to trace the variables

PYTraceDebug, to trace the Python instructions

 (SYTraceMem to trace the RAM . To read the status of the RAM read

SAFEHeapPool) OLD

BASTraceMemory to trace the RAM available. To read the status search for sentences

like

 BAS reporting available memory Safe data: 1046528/1048576 (free memory/total

memory)

 This method is effective if the script doesn't stop at the start-up

 You could consider a script useful to monitor the names: dict_debug.py:

 sys.getinterned() is an internal method which permits to list the names allocated in the

dictionary

 Using MemCheck method you could find how many locations are free (– when the dictionary is not

full yet : MemCheck() in the script generates strings to increase the dictionary until the exception

occurrs)

 Then you need to comment the call of the method when you need to debug your script

 Current I=0

 Current I=20

 Memory Block Error: Invalid size

 MemCheck:LAST=34;E01=[MemoryError,None]

 For this example free names are 34 plus/minus 2

 Other tricks:

 print 'KAMEN0 %d KOKO'% 1

 print 'KAMEN1 %d KOKO'% 1

 print 'KAMEN2 %d KOKO'% 1

 print 'KAMEN3 %d KOKO'% 1

 print 'KAMEN4 %d KOKO'% 1

 doesn’t eat memory

 RR = lambda S:S[:-1]

 ...

 if S == RR('COMMAND_1\r'):pass

 elif S == RR('COMMAND_2\r'):pass

telitpython / Comm_errors_possible_solutions_table

1 di 2 25/01/2011 14.43

 elif S == RR('COMMAND_3\r'):pass

 doesn’t eat memory

telitpython / Comm_errors_possible_solutions_table

2 di 2 25/01/2011 14.43

